Comparing classical and quantum PageRanks

Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker’s probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.

[1]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[2]  Béla Bollobás,et al.  Random Graphs , 1985 .

[3]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[4]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[5]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[6]  Eli Upfal,et al.  Using PageRank to Characterize Web Structure , 2002, COCOON.

[7]  J. B. Wang,et al.  Efficient quantum circuits for Szegedy quantum walks , 2016, 1609.00173.

[8]  S. Borgatti,et al.  Notions of position in social network analysis , 1992 .

[9]  Francesc de Paula Comellas Padró,et al.  Modeling complex networks with self-similar outerplanar unclustered graphs , 2009 .

[10]  Sergey Brin,et al.  Reprint of: The anatomy of a large-scale hypertextual web search engine , 2012, Comput. Networks.

[11]  Francesc Comellas,et al.  Modeling complex networks with self-similar outerplanar unclustered graphs ☆ , 2009 .

[12]  Bernhard H. Haak,et al.  Open Quantum Systems , 2019, Tutorials, Schools, and Workshops in the Mathematical Sciences.

[13]  Ashley Montanaro,et al.  Quantum walks on directed graphs , 2005, Quantum Inf. Comput..

[14]  S. D. Berry,et al.  Quantum-walk-based search and centrality , 2010, 1010.0764.

[15]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[16]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[17]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[18]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[19]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[20]  Francesc de Paula Comellas Padró,et al.  Vertex labeling and routing in self-similar outerplanar unclustered graphs modeling complex networks , 2009 .

[21]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[22]  Miguel-Angel Martin-Delgado,et al.  Google in a Quantum Network , 2011, Scientific Reports.

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[25]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.

[26]  B. Bollobás The evolution of random graphs , 1984 .

[27]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[28]  Jesús Gómez-Gardeñes,et al.  Quantum Navigation and Ranking in Complex Networks , 2012, Scientific Reports.

[29]  Mario Szegedy,et al.  Spectra of Quantized Walks and a $\sqrt{\delta\epsilon}$ rule , 2004, quant-ph/0401053.

[30]  Xiao Zhang,et al.  Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[32]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[33]  Martin G. Everett,et al.  Role similarity and complexity in social networks , 1985 .

[34]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[35]  Huelga,et al.  [SpringerBriefs in Physics] Open Quantum Systems || Mathematical Tools , 2012 .

[36]  Debora Donato,et al.  Large scale properties of the Webgraph , 2004 .

[37]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[38]  Miguel-Angel Martin-Delgado,et al.  Quantum Google in a Complex Network , 2013, Scientific Reports.

[39]  Béla Bollobás,et al.  Directed scale-free graphs , 2003, SODA '03.

[40]  Pawel Wocjan,et al.  Efficient circuits for quantum walks , 2009, Quantum Inf. Comput..

[41]  Albert-László Barabási,et al.  Scale-free networks , 2008, Scholarpedia.