FO Model Checking of Interval Graphs

We study the computational complexity of the FO model checking problem on interval graphs, i.e., intersection graphs of intervals on the real line. The main positive result is that this problem can be solved in time O(n logn) for n-vertex interval graphs with representations containing only intervals with lengths from a prescribed finite set. We complement this result by showing that the same is not true if the lengths are restricted to any set that is dense in some open subset, e.g., in the set (1, 1+e).

[1]  Stephan Kreutzer,et al.  Methods for Algorithmic Meta Theorems , 2009, AMS-ASL Joint Special Session.

[2]  Martin Grohe,et al.  Deciding first-order properties of locally tree-decomposable structures , 2000, JACM.

[3]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[4]  Robin Thomas,et al.  Deciding First-Order Properties for Sparse Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[5]  Detlef Seese,et al.  Linear time computable problems and first-order descriptions , 1996, Mathematical Structures in Computer Science.

[6]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[7]  Alexander Langer,et al.  Evaluation of an MSO-Solver , 2012, ALENEX.

[8]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion II. Algorithmic aspects , 2008, Eur. J. Comb..

[9]  Stephan Kreutzer,et al.  Algorithmic Meta-theorems , 2008, IWPEC.

[10]  Stephan Kreutzer,et al.  Parameterized Complexity of First-Order Logic , 2009, Electron. Colloquium Comput. Complex..

[11]  Joachim Kneis,et al.  Courcelle's theorem - A game-theoretic approach , 2011, Discret. Optim..

[12]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[13]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[14]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion III. Restricted graph homomorphism dualities , 2008, Eur. J. Comb..

[15]  Vadim V. Lozin,et al.  From Tree-Width to Clique-Width: Excluding a Unit Interval Graph , 2008, ISAAC.

[16]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[17]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[18]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[19]  Stephan Kreutzer,et al.  Locally Excluding a Minor , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[20]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..