Ontology-Based Information Behaviour to Improve Web Search

Web Search Engines provide a huge number of answers in response to a user query, many of which are not relevant, whereas some of the most relevant ones may not be found. In the literature several approaches have been proposed in order to help a user to find the information relevant to his/her real needs on the Web. To achieve this goal the individual Information Behavior can been analyzed to ’keep’ track of the user’s interests. Keeping information is a type of Information Behavior, and in several works researchers have referred to it as the study on what people do during a search on the Web. Generally, the user’s actions (e.g., how the user moves from one Web page to another, or her/his download of a document, etc.) are recorded in Web logs. This paper reports on research activities which aim to exploit the information extracted from Web logs (or query logs) in personalized user ontologies, with the objective to support the user in the process of discovering Web information relevant to her/his information needs. Personalized ontologies are used to improve the quality of Web search by applying two main techniques: query reformulation and re-ranking of query evaluation results. In this paper we analyze various methodologies presented in the literature aimed at using personalized ontologies, defined on the basis of the observation of Information Behaviour to help the user in finding relevant information.

[1]  Yi-Shin Chen,et al.  Web Information Personalization: Challenges and Approaches , 2003, DNIS.

[2]  John Domingue,et al.  The Future of the Internet , 1999, Academia Letters.

[3]  Christoph Meinel,et al.  Web Search Personalization Via Social Bookmarking and Tagging , 2007, ISWC/ASWC.

[4]  Xiaoyong Du,et al.  Ontology-Based Categorization of Web Search Results Using YAGO , 2009, 2009 International Joint Conference on Computational Sciences and Optimization.

[5]  Joemon M. Jose,et al.  Personalizing Web Search with Folksonomy-Based User and Document Profiles , 2010, ECIR.

[6]  Dietrich Rebholz-Schuhmann,et al.  Ontology refinement for improved information retrieval , 2010, Inf. Process. Manag..

[7]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[8]  Susan T. Dumais,et al.  Information behaviour that keeps found things found , 2004, Inf. Res..

[9]  Bamshad Mobasher,et al.  Web search personalization with ontological user profiles , 2007, CIKM '07.

[10]  Nigel Shadbolt,et al.  A Study of User Profile Generation from Folksonomies , 2008, SWKM.

[11]  Gerhard Weikum,et al.  NAGA: harvesting, searching and ranking knowledge , 2008, SIGMOD Conference.

[12]  Fabio Gasparetti,et al.  Personalized Search on the World Wide Web , 2007, The Adaptive Web.

[13]  Yannis Avrithis,et al.  Personalized information retrieval in context , 2006 .

[14]  P. Chatterjee,et al.  Modeling the Clickstream: Implications for Web-Based Advertising Efforts , 2003 .

[15]  Nicola Guarino,et al.  Ontologies and Knowledge Bases. Towards a Terminological Clarification , 1995 .

[16]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[17]  James Allan,et al.  Automatic Query Expansion Using SMART: TREC 3 , 1994, TREC.

[18]  Mohand Boughanem,et al.  A session based personalized search using an ontological user profile , 2009, SAC '09.

[19]  Susan Gauch,et al.  Miology: A Web Application for Organizing Personal Domain Ontologies , 2009, 2009 International Conference on Information, Process, and Knowledge Management.

[20]  Wolfgang Nejdl,et al.  Using ODP metadata to personalize search , 2005, SIGIR '05.

[21]  Rong Yan,et al.  Semantic concept-based query expansion and re-ranking for multimedia retrieval , 2007, ACM Multimedia.

[22]  Gerhard Weikum,et al.  YAGO: A Large Ontology from Wikipedia and WordNet , 2008, J. Web Semant..

[23]  Henrik Eriksson The semantic-document approach to combining documents and ontologies , 2007, Int. J. Hum. Comput. Stud..

[24]  Valentina A. M. Tamma An ontology model supporting multiple ontologies for knowledge sharing , 2001 .

[25]  Alia I. Abdelmoty,et al.  Ontology-Based Spatial Query Expansion in Information Retrieval , 2005, OTM Conferences.

[26]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[27]  Jian-Yun Nie,et al.  Using query contexts in information retrieval , 2007, SIGIR.

[28]  Bamshad Mobasher,et al.  Learning Ontology-Based User Profiles: A Semantic Approach to Personalized Web Search , 2007, IEEE Intell. Informatics Bull..

[29]  Xiaoyun Wang,et al.  A Query Optimization Based on Semantic User Focus , 2009, 2009 First International Workshop on Database Technology and Applications.

[30]  Hsin-Hsi Chen,et al.  Query Expansion with ConceptNet and WordNet: An Intrinsic Comparison , 2006, AIRS.

[31]  Jaana Kekäläinen,et al.  Ontology as a Search-Tool: A Study of Real Users' Query Formulation With and Without Conceptual Support , 2005, ECIR.

[32]  William R. Murray,et al.  A Practical Approach to Bayesian Student Modeling , 1998, Intelligent Tutoring Systems.

[33]  Thomas D. Wilson,et al.  Human Information Behavior , 2000, Informing Sci. Int. J. an Emerg. Transdiscipl..

[34]  Simone Santini An Oddly-Positioned Position Paper on Context and Ontology , 2008, 2008 IEEE International Conference on Semantic Computing.

[35]  Gerhard Weikum,et al.  NAGA: Searching and Ranking Knowledge , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[36]  Hsin-Hsi Chen,et al.  Combining WordNet and ConceptNet for Automatic Query Expansion: A Learning Approach , 2008, AIRS.

[37]  Roberto Navigli,et al.  An analysis of ontology-based query expansion strategies , 2003 .

[38]  James E. Andrews,et al.  Intention to seek information on cancer genetics , 2005, Inf. Res..

[39]  Elisabeth Métais,et al.  Building and maintaining ontologies: a set of algorithms , 2004, Data Knowl. Eng..

[40]  Carola Carstens Effects of Using a Research Context Ontology for Query Expansion , 2009, ESWC.

[41]  Mohand Boughanem,et al.  An Information Retrieval Driven by Ontology: from Query to Document Expansion , 2007, RIAO.

[42]  Zhendong Niu,et al.  An Ontology-Based Query System for Digital Libraries , 2008, 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.

[43]  John G. Breslin,et al.  The State of the Art in Tag Ontologies: A Semantic Model for Tagging and Folksonomies , 2008, Dublin Core Conference.

[44]  Mohand Boughanem,et al.  Learning user interests for a session-based personalized search , 2008, IIiX.

[45]  Troels Andreasen,et al.  Ontology-Based Querying , 2000, FQAS.

[46]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[47]  Carlos Juiz,et al.  Web Performance and Behavior Ontology , 2008, 2008 International Conference on Complex, Intelligent and Software Intensive Systems.

[48]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[49]  Bamshad Mobasher,et al.  Ontological User Profiles for Representing Context in Web Search , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[50]  Susan Gauch,et al.  Improving Ontology-Based User Profiles , 2004, RIAO.

[51]  Rudi Studer,et al.  An Approach for Step-By-Step Query Refinement in the Ontology-Based Information Retrieval , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[52]  Efthimis N. Efthimiadis,et al.  Interactive query expansion: A user-based evaluation in a relevance feedback environment , 2000, J. Am. Soc. Inf. Sci..

[53]  Simone Santini,et al.  Context as a Non-ontological Determinant of Semantics , 2008, SAMT.

[54]  Yong Yu,et al.  Exploring folksonomy for personalized search , 2008, SIGIR '08.

[55]  Kun Hua Tsai,et al.  A practical ontology query expansion algorithm for semantic-aware learning objects retrieval , 2008, Comput. Educ..

[56]  Dekang Lin,et al.  Automatic Identification of Non-compositional Phrases , 1999, ACL.

[57]  Ellen M. Voorhees,et al.  On the number of terms used in automatic query expansion , 2009, Information Retrieval.

[58]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[59]  Luigi Cinque,et al.  OntoDoc: an ontology-based query system for digital libraries , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[60]  Mark Hepworth,et al.  Knowledge of information behaviour and its relevance to the design of people-centred information products and services , 2007, J. Documentation.

[61]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[62]  Yannis Avrithis,et al.  Personalized information retrieval based on context and ontological knowledge , 2008, The Knowledge Engineering Review.

[63]  Gerhard Weikum,et al.  Personalizing the Search for Knowledge , 2008, PersDB.

[64]  GauchSusan,et al.  Ontology-based personalized search and browsing , 2003 .

[65]  Yuefeng Li,et al.  Mining ontology for automatically acquiring Web user information needs , 2006, IEEE Transactions on Knowledge and Data Engineering.

[66]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[67]  T. V. Geetha,et al.  Personalized ontology for web search personalization , 2008, Bangalore Compute Conf..

[68]  Susan Gauch,et al.  Exploiting hierarchical relationships in conceptual search , 2004, CIKM '04.

[69]  Steve Lawrence,et al.  Context in Web Search , 2000, IEEE Data Eng. Bull..

[70]  Min Song,et al.  Integration of association rules and ontologies for semantic query expansion , 2007, Data Knowl. Eng..

[71]  P. Smith,et al.  A review of ontology based query expansion , 2007, Inf. Process. Manag..

[72]  Xiaojian Li,et al.  Personalized Query Expansion Based on Semantic User Model in E-learning System , 2009, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery.

[73]  Clement T. Yu,et al.  Personalized Web search for improving retrieval effectiveness , 2004, IEEE Transactions on Knowledge and Data Engineering.

[74]  Luis Alfonso Ureña López,et al.  Query expansion with a medical ontology to improve a multimodal information retrieval system , 2009, Comput. Biol. Medicine.

[75]  Lucy A. Suchman,et al.  Plans and Situated Actions: The Problem of Human-Machine Communication (Learning in Doing: Social, , 1987 .

[76]  Pertti Vakkari,et al.  Subject knowledge improves interactive query expansion assisted by a thesaurus , 2004, J. Documentation.

[77]  Clement T. Yu,et al.  An effective approach to document retrieval via utilizing WordNet and recognizing phrases , 2004, SIGIR '04.

[78]  Gloria Bordogna,et al.  A flexible multi criteria information filtering model , 2010, Soft Comput..

[79]  Alexander Pretschner,et al.  Ontology-based personalized search and browsing , 2003, Web Intell. Agent Syst..

[80]  Kannan Srinivasan,et al.  Modeling Online Browsing and Path Analysis Using Clickstream Data , 2004 .