An Algorithmic Information Theoretic Approach to the Behaviour of Financial Markets

Using frequency distributions of daily closing price time series of several financial market indexes, we investigate whether the bias away from an equiprobable sequence distribution found in the data, predicted by algorithmic information theory, may account for some of the deviation of financial markets from log-normal, and if so for how much of said deviation and over what sequence lengths. We do so by comparing the distributions of binary sequences from actual time series of financial markets and series built up from purely algorithmic means. Our discussion is a starting point for a further investigation of the market as a rule-based system with an 'algorithmic' component, despite its apparent randomness, and the use of the theory of algorithmic probability with new tools that can be applied to the study of the market price phenomenon. The main discussion is cast in terms of assumptions common to areas of economics in agreement with an algorithmic view of the market.

[1]  Marcus Hutter,et al.  On Universal Prediction and Bayesian Confirmation , 2007, Theor. Comput. Sci..

[2]  R. Harré,et al.  Probability and Confirmation , 1970 .

[3]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[4]  Cristian Claude,et al.  Information and Randomness: An Algorithmic Perspective , 1994 .

[5]  Paul M. B. Vitányi,et al.  The miraculous universal distribution , 1997 .

[6]  Hilary Putnam The meaning of the concept of probability in application to finite sequences , 1990 .

[7]  E. Fama Mandelbrot and the Stable Paretian Hypothesis , 1963 .

[8]  D Lamper,et al.  Predictability of large future changes in a competitive evolving population. , 2002, Physical review letters.

[9]  G. W. Snedecor Statistical Methods , 1964 .

[10]  J. Stiglitz The Contributions of the Economics of Information to Twentieth Century Economics , 2000 .

[11]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[12]  Colin Camerer,et al.  Advances in behavioral economics , 2004 .

[13]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[14]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[15]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[16]  Jean-Paul Delahaye,et al.  On the Algorithmic Nature of the World , 2009, ArXiv.

[17]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[18]  C. Schnorr Zufälligkeit und Wahrscheinlichkeit , 1971 .

[19]  A. Wald,et al.  Probability, statistics and truth , 1939 .

[20]  C. Dilworth Probability and Confirmation , 1988 .

[21]  B. Pritychenko,et al.  0(+)(gs) --> 2(+)(1) excitations in the mirror nuclei 32Ar and 32Si. , 2002, Physical review letters.

[22]  Jean-Paul Delahaye,et al.  Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness , 2011, Appl. Math. Comput..

[23]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[24]  Kumaraswamy Velupillai,et al.  Computable Economics: The Arne Ryde Memorial Lectures , 2000 .

[25]  J. Keynes,et al.  The General Theory of Employment, Interest and Money. , 1936 .

[26]  Sanjeev Arora,et al.  Computational complexity and information asymmetry in financial products , 2011, Commun. ACM.

[27]  Dale J. Poirier,et al.  The Growth of Bayesian Methods in Statistics and Economics Since 1970 , 2006 .

[28]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[29]  Claus-Peter Schnorr,et al.  Zufälligkeit und Wahrscheinlichkeit - Eine algorithmische Begründung der Wahrscheinlichkeitstheorie , 1971, Lecture Notes in Mathematics.

[30]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[31]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[32]  J. Wolfers,et al.  Disagreement about Inflation Expectations , 2003, NBER Macroeconomics Annual.

[33]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[34]  R. Clower,et al.  Economics as an Inductive Science , 1994 .

[35]  Gregory J. Chaitin,et al.  Exploring RANDOMNESS , 2001, Discrete Mathematics and Theoretical Computer Science.

[36]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[37]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[38]  Ricardo Mansilla Algorithmic Complexity of Real Financial Markets , 2001 .

[39]  M. Beckmann Distribution of Income , 1978 .

[40]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[41]  Distribution of Income in 1935–36 , 1942 .

[42]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[43]  L. Walras Elements of Pure Economics , 1954 .

[44]  Jean-Paul Delahaye,et al.  On the Kolmogorov-Chaitin Complexity for short sequences , 2007, ArXiv.