Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems
暂无分享,去创建一个
C. A. Coello Coello | E. Talbi | M. Dellnitz | O. Schütze | Sanaz Mostaghim | C. C. Coello Coello | El-Ghazali Talbi
[1] Charles Gide,et al. Cours d'économie politique , 1911 .
[2] J. Marchal. Cours d'economie politique , 1950 .
[3] E. Polak,et al. On Multicriteria Optimization , 1976 .
[4] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[5] M. Dellnitz,et al. A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .
[6] G. Rudolph. On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[7] RudolphGünter. Finite Markov chain results in evolutionary computation , 1998 .
[8] Russell C. Eberhart,et al. Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.
[9] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[10] XI FachbereichInformatik. Finite Markov Chain Results in Evolutionary Computation: a Tour D'horizon , 1998 .
[11] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[12] Joshua D. Knowles,et al. M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[13] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[14] Günter Rudolph,et al. Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[15] Jörg Fliege,et al. Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..
[16] Xavier Gandibleux,et al. The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.
[17] C. Hillermeier. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .
[18] Marco Laumanns,et al. On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms , 2001 .
[19] Claus Hillermeier,et al. Nonlinear Multiobjective Optimization , 2001 .
[20] S. Schäffler,et al. Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .
[21] Marco Laumanns,et al. Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.
[22] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[23] Jonathan E. Fieldsend,et al. A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .
[24] M. Lahanas,et al. Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy. , 2003, Physics in medicine and biology.
[25] Martin Brown,et al. Effective Use of Directional Information in Multi-objective Evolutionary Computation , 2003, GECCO.
[26] Jürgen Teich,et al. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).
[27] Jürgen Teich,et al. Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques , 2003, EMO.
[28] Sanaz Mostaghim. Multi-objective evolutionary algorithms: data structures, convergence, and diversity , 2004 .
[29] X. Gandibleux,et al. Approximative solution methods for multiobjective combinatorial optimization , 2004 .
[30] Carlos A. Coello Coello,et al. Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.
[31] Joshua D. Knowles,et al. Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .
[32] J. Fieldsend. Multi-Objective Particle Swarm Optimisation Methods , 2004 .
[33] M. Dellnitz,et al. Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .
[34] Peter A. N. Bosman,et al. Exploiting gradient information in numerical multi--objective evolutionary optimization , 2005, GECCO '05.
[35] Tong Heng Lee,et al. Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.
[36] M Reyes Sierra,et al. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .
[37] Peter A. N. Bosman,et al. Combining gradient techniques for numerical multi-objective evolutionary optimization , 2006, GECCO '06.
[38] Jürgen Branke,et al. About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.
[39] Qingfu Zhang,et al. Modelling the Population Distribution in Multi-objective Optimization by Generative Topographic Mapping , 2006, PPSN.
[40] Marco Laumanns,et al. Convergence of stochastic search algorithms to gap-free pareto front approximations , 2007, GECCO '07.
[41] Isao Ono,et al. Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA , 2007, GECCO '07.
[42] Marco Laumanns,et al. Convergence of stochastic search algorithms to finite size pareto set approximations , 2008, J. Glob. Optim..
[43] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[44] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .