Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems

Two techniques for the numerical treatment of multi-objective optimization problems—a continuation method and a particle swarm optimizer—are combined in order to unite their particular advantages. Continuation methods can be applied very efficiently to perform the search along the Pareto set, even for high-dimensional models, but are of local nature. In contrast, many multi-objective particle swarm optimizers tend to have slow convergence, but instead accomplish the ‘global task’ well. An algorithm which combines these two techniques is proposed, some convergence results for continuous models are provided, possible realizations are discussed, and finally some numerical results are presented indicating the strength of this novel approach.

[1]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[2]  J. Marchal Cours d'economie politique , 1950 .

[3]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[6]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  RudolphGünter Finite Markov chain results in evolutionary computation , 1998 .

[8]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[9]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[10]  XI FachbereichInformatik Finite Markov Chain Results in Evolutionary Computation: a Tour D'horizon , 1998 .

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[13]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[14]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[15]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[16]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[17]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[18]  Marco Laumanns,et al.  On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms , 2001 .

[19]  Claus Hillermeier,et al.  Nonlinear Multiobjective Optimization , 2001 .

[20]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[21]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[22]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[23]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[24]  M. Lahanas,et al.  Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy. , 2003, Physics in medicine and biology.

[25]  Martin Brown,et al.  Effective Use of Directional Information in Multi-objective Evolutionary Computation , 2003, GECCO.

[26]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[27]  Jürgen Teich,et al.  Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques , 2003, EMO.

[28]  Sanaz Mostaghim Multi-objective evolutionary algorithms: data structures, convergence, and diversity , 2004 .

[29]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[30]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[31]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[32]  J. Fieldsend Multi-Objective Particle Swarm Optimisation Methods , 2004 .

[33]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[34]  Peter A. N. Bosman,et al.  Exploiting gradient information in numerical multi--objective evolutionary optimization , 2005, GECCO '05.

[35]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[36]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[37]  Peter A. N. Bosman,et al.  Combining gradient techniques for numerical multi-objective evolutionary optimization , 2006, GECCO '06.

[38]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[39]  Qingfu Zhang,et al.  Modelling the Population Distribution in Multi-objective Optimization by Generative Topographic Mapping , 2006, PPSN.

[40]  Marco Laumanns,et al.  Convergence of stochastic search algorithms to gap-free pareto front approximations , 2007, GECCO '07.

[41]  Isao Ono,et al.  Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA , 2007, GECCO '07.

[42]  Marco Laumanns,et al.  Convergence of stochastic search algorithms to finite size pareto set approximations , 2008, J. Glob. Optim..

[43]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[44]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .