Taylor series expansions for Poisson-driven $(\max,+$)-linear systems

[1]  J. Doob Stochastic processes , 1953 .

[2]  Donald L. Snyder,et al.  Random point processes , 1975 .

[3]  O. Boxma On a tandem queueing model with identical service times at both counters, II , 1979, Advances in Applied Probability.

[4]  V. Schmidt,et al.  Queues and Point Processes , 1983 .

[5]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[6]  Gerard Hooghiemstra,et al.  Power series for stationary distributions of coupled processor models , 1988 .

[7]  Onno Boxma,et al.  Sojourn times in queueing networks , 1989 .

[8]  Jianqiang Hu,et al.  The MacLaurin series for the GI/G/1 queue , 1992, Journal of Applied Probability.

[9]  J. P. C. Blanc The Power-Series Algorithm Applied to the Shortest-Queue Model , 1992, Oper. Res..

[10]  F. Baccelli Ergodic Theory of Stochastic Petri Networks , 1992 .

[11]  P. Brémaud,et al.  Virtual customers in sensitivity and light traffic analysis via Campbell's formula for point processes , 1993, Advances in Applied Probability.

[12]  Dinah W. Cheng,et al.  Tandem queues with general blocking: A unified model and comparison results , 1993, Discret. Event Dyn. Syst..

[13]  Bartlomiej Blaszczyszyn,et al.  Queues in Series in Light Traffic , 1993 .

[14]  Pierre Le Gall The overall sojourn time in tandem queues with identical successive service times and renewal input , 1994 .

[15]  François Baccelli,et al.  Elements Of Queueing Theory , 1994 .

[16]  Bartlomiej Blaszczyszyn,et al.  Light-traffic approximations for Markov-modulated multi-server queues , 1995 .

[17]  Volker Schmidt,et al.  Light-Traffic Analysis for Queues with Spatially Distributed Arrivals , 1996, Math. Oper. Res..