σ-Holes, π-holes and electrostatically-driven interactions

[1]  J. Murray,et al.  Electronegativity and the concept of charge capacity , 1992 .

[2]  Nobuaki Koga,et al.  Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods , 2010, J. Comput. Chem..

[3]  J. Murray,et al.  A computational analysis of the bonding in boron trifluoride and boron trichloride and their complexes with ammonia , 1993 .

[4]  Pavel Hobza,et al.  Blue shifts vs red shifts in σ-hole bonding , 2008, Journal of molecular modeling.

[5]  J. Murray,et al.  σ-hole bonding: molecules containing group VI atoms , 2007 .

[6]  H. Schaefer,et al.  Stable Hexacoordinated Neutral Complexes between Silyl Halides and Two Water or Two Ammonia Molecules: SiX4Y2(X = H, F, Cl; Y = H2O, NH3) , 2001 .

[7]  Jerzy Leszczynski,et al.  Practical Aspects of Computational Chemistry IV , 2012 .

[8]  S. Ikuta Anisotropy of electron-density distribution around atoms in molecules: N, P, O and S atoms , 1990 .

[9]  J. Murray,et al.  Enhanced detonation sensitivities of silicon analogs of PETN: reaction force analysis and the role of σ–hole interactions , 2010 .

[10]  Peter Politzer,et al.  The fundamental nature and role of the electrostatic potential in atoms and molecules , 2002 .

[11]  E. Stevens Experimental electron density distribution of molecular chlorine , 1979 .

[12]  Marcel Nooijen,et al.  Coupled cluster approach to the single-particle Green's function , 1992 .

[13]  J. Murray,et al.  Average local ionization energy: A review , 2010, Journal of molecular modeling.

[14]  Peter Politzer,et al.  Expansion of the σ-hole concept , 2009, Journal of molecular modeling.

[15]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[16]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[17]  A. Bondi van der Waals Volumes and Radii , 1964 .

[18]  Peter Politzer,et al.  Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies , 2010, Journal of molecular modeling.

[19]  A. Stone,et al.  The Nature of -Cl.cntdot..cntdot..cntdot.Cl- Intermolecular Interactions , 1994 .

[20]  P. F. Zhou,et al.  Topological definition of crystal structure: determination of the bonded interactions in solid molecular chlorine , 1995 .

[21]  R. Stewart On the mapping of electrostatic properties from bragg diffraction data , 1979 .

[22]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[23]  Peter Politzer,et al.  A predicted new type of directional noncovalent interaction , 2007 .

[24]  Frank H. Allen,et al.  The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen , 1996 .

[25]  Robert A. Wolkow,et al.  Application of 25 density functionals to dispersion-bound homomolecular dimers , 2004 .

[26]  Peter Politzer,et al.  Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes , 1990 .

[27]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[28]  Peter Politzer,et al.  Directional tendencies of halogen and hydrogen bonds , 2010 .

[29]  José Elguero,et al.  Do traditional, chlorine-shared, and ion-pair halogen bonds exist? An ab initio investigation of FCl:CNX complexes. , 2010, The journal of physical chemistry. A.

[30]  Peter Politzer,et al.  Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions , 1992 .

[31]  S. J. Grabowski,et al.  Cooperativity halogen bonding effect – Ab initio calculations on H2CO⋯(ClF)n complexes , 2006 .

[32]  D. Lide Handbook of Chemistry and Physics , 1992 .

[33]  Peter Politzer,et al.  The electrostatic potential: an overview , 2011 .

[34]  Pavel Hobza,et al.  On the Structure and Geometry of Biomolecular Binding Motifs (Hydrogen-Bonding, Stacking, X-H···π): WFT and DFT Calculations. , 2010, Journal of chemical theory and computation.

[35]  J. Murray,et al.  Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions , 2009 .

[36]  Pavel Hobza,et al.  Br···O Complexes as Probes of Factors Affecting Halogen Bonding: Interactions of Bromobenzenes and Bromopyrimidines with Acetone. , 2009, Journal of chemical theory and computation.

[37]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[38]  Jindřich Fanfrlík,et al.  Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine , 2011, Journal of molecular modeling.

[39]  Timothy Clark,et al.  Directional Weak Intermolecular Interactions: σ-Hole Bonding , 2010 .

[40]  J. Murray,et al.  An Overview of σ-Hole Bonding, an Important and Widely-Occurring Noncovalent Interaction , 2009 .

[41]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Wong-Ng,et al.  Anisotropic atom–atom forces and the space group of solid chlorine , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[44]  Monica C. Concha,et al.  Electrostatically driven complexes of SiF4 with amines , 2009 .

[45]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[46]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[47]  Pavel Hobza,et al.  Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. , 2007, The journal of physical chemistry. A.