Properties and morphologies of Lyman break galaxies at z ∼ 1 in the Chandra Deep Field South, inferred from spectral energy distributions

After carefully cross-identifying previously discovered - and selected by the Galaxy Evolution Explorer (GALEX) - Lyman break galaxy (LBG) candidates one-to-one with their optical counterparts in the field of the Chandra Deep Field South (CDF-S), we re-estimate their photometric redshifts using multiwavelength data from ultraviolet and optical to near-infrared. Considering their re-estimated photometric redshifts and spectral energy distributions, we refine a new updated sample of 383 LBGs at 0.7 less than or similar to z less than or similar to 1.4, with two confirmed active galactic nuclei being excluded. There are 260 and 111 LBGs classified as starburst and irregular types, respectively. The ages of the LBGs span from several Myr to 1.5 Gyr with a median of similar to 50 Myr. Their dust-corrected star formation rates (SFRs) and stellar masses (M-*) are 4-220 M-circle dot yr(-1) and from 2.3 x 10(8) to 4 x 10(11) M-circle dot, with median values of similar to 25 M-circle dot yr(-1) and similar to 10(10) M-circle dot. The rest-frame far-ultraviolet luminosity function of the LBGs is presented with the best-fitting Schechter parameters of alpha = -1.61 +/- 0.40, M* = -20.40 +/- 0.22 and phi* = (0.89 +/- 0.30) x 10(-3) Mpc(-3) dex(-1). LBGs of irregular types are mainly distributed along the main sequence of star-forming galaxies, while most LBGs of starburst types are located in the starburst region. Together with previous studies, we suggest that the star formation mode for LBGs at z > 3 is mainly starburst, and that it evolves to be more significant to the quenching mode after z similar to 3. A downsizing effect is clearly found, and we discuss the physical implications and comparisons with previous studies in detail. LBGs with larger SFRs are, on average, more compact. In the rest-frame colour (U - B)-M-* diagram, LBGs are distributed in the 'blue' cloud. We suggest that LBGs might evolve along the blue cloud from later to earlier types. The Hubble Space Telescope images in F606W (V band) and F850LP (z band) are taken from the Galaxy Evolution from Morphology and SEDs (GEMS) survey and the Great Observatories Origins Deep Survey South (GOODS-S) for morphological studies of LBGs. SEXTRACTOR and GALFIT are applied in order to obtain their morphological parameters. We establish an image gallery of 277 LBGs, commonly detected in both bands, by visually classifying individual LBGs into the following types: chain, spiral, tadpole, bulge and clump. We define a morphological sample of 142 LBGs with reliable results of Sersic indices and sizes in both bands. We find that LBGs at z similar to 1 are dominated by disc-like galaxies, with median sizes of 2.34 and 2.68 kpc in F606W and F850LP, respectively. The correlations between the photometric and morphological properties of LBGs are investigated. Strong correlations between their half-light radii and M-* (i.e. size-stellar mass relations) are found in both bands. We discuss the physical connections between the correlations and the downsizing effect.

[1]  D. Elbaz,et al.  GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies , 2012, 1207.3528.

[2]  Oxford,et al.  The current status of galaxy formation , 2012, 1207.3080.

[3]  T. Ichikawa,et al.  A universal stellar-mass and size relation of galaxies in GOODS-N region , 2012, 1202.1138.

[4]  D. Elbaz,et al.  THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z < 2 , 2012, 1202.0290.

[5]  G. Williger,et al.  GALEX-SELECTED LYMAN BREAK GALAXIES AT z ∼ 2: COMPARISON WITH OTHER POPULATIONS , 2011, 1112.2786.

[6]  E. Bell,et al.  MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION , 2011, 1112.1077.

[7]  C. Gronwall,et al.  A SEARCH FOR LYMAN BREAK GALAXIES IN THE CHANDRA DEEP FIELD SOUTH USING SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2011 .

[8]  C. Fassnacht,et al.  THE ASSEMBLY OF THE RED SEQUENCE AT z ∼ 1: THE COLOR AND SPECTRAL PROPERTIES OF GALAXIES IN THE Cl1604 SUPERCLUSTER , 2011, 1108.5799.

[9]  D. Elbaz,et al.  GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z ∼ 2 , 2011, 1107.2653.

[10]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[11]  Alison L. Coil,et al.  THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.

[12]  T. Tuvikene,et al.  SDSS surface photometry of M 31 with absorption corrections , 2010, 1012.3591.

[13]  J. Walsh,et al.  Stellar properties of z ~ 1 Lyman-break galaxies from ACS slitless grism spectra , 2010, 1009.1619.

[14]  G. Zamorani,et al.  THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS , 2010, 1011.5360.

[15]  M. Mosleh,et al.  THE EVOLUTION OF THE MASS–SIZE RELATION TO z = 3.5 FOR UV-BRIGHT GALAXIES AND SUBMILLIMETER GALAXIES IN THE GOODS-NORTH FIELD , 2010, 1011.3042.

[16]  H. Rix,et al.  THE SIMPLE SURVEY: OBSERVATIONS, REDUCTION, AND CATALOG , 2010, 1011.2764.

[17]  D. Elbaz,et al.  Herschel reveals a T-dust-unbiased selection of z similar to 2 ultraluminous infrared galaxies , 2010 .

[18]  H. Rix,et al.  STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO , 2010, 1010.2239.

[19]  Douglas Scott,et al.  The Hubble Space Telescope GOODS NICMOS Survey: Overview and the Evolution of Massive Galaxies at 1.5 < z < 3 , 2010, 1010.1164.

[20]  Pieter G. van Dokkum,et al.  A substantial population of low-mass stars in luminous elliptical galaxies , 2010, Nature.

[21]  D. M. Alexander,et al.  THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: OPTICAL SPECTROSCOPY OF FAINT X-RAY SOURCES WITH THE VLT AND KECK , 2010, 1009.1923.

[22]  S. Shen,et al.  THE MASS-DEPENDENT STAR FORMATION HISTORIES OF DISK GALAXIES: INFALL MODEL VERSUS OBSERVATIONS , 2010, 1008.3045.

[23]  F. Castander,et al.  Herschel FIR counterparts of selected Lyα emitters at z ~ 2.2 - Fast evolution since z ~ 3 or missed obscured AGNs? , 2010, 1008.1753.

[24]  K. Schawinski,et al.  THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S , 2010, 1008.2974.

[25]  B. Garilli,et al.  The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up to z ~ 1 , 2010, 1007.3841.

[26]  A. Cimatti,et al.  The star-formation rates of 1.5 < z < 2.5 massive galaxies , 2010 .

[27]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[28]  O. Ilbert,et al.  Stellar Mass and Velocity Functions of Galaxies: Backward evolution and the fate of Milky Way siblings , 2010, 1005.5004.

[29]  A. Cimatti,et al.  PEP: First Herschel probe of dusty galaxy evolution up to z ~ 3 , 2010, 1005.1473.

[30]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[31]  M. Jarvis,et al.  Probing ∼L* Lyman‐break galaxies at z≈ 7 in GOODS‐South with WFC3 on Hubble Space Telescope , 2010 .

[32]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[33]  K. Schawinski,et al.  THE ROLE OF MERGERS IN EARLY-TYPE GALAXY EVOLUTION AND BLACK HOLE GROWTH , 2010, 1003.4018.

[34]  D. M. Alexander,et al.  IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES , 2010, 1002.3154.

[35]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[36]  G. Magdis,et al.  On the stellar masses of IRAC detected Lyman Break Galaxies at z∼ 3 , 2009, 0909.3950.

[37]  B. Garilli,et al.  THE 10k zCOSMOS: MORPHOLOGICAL TRANSFORMATION OF GALAXIES IN THE GROUP ENVIRONMENT SINCE z ∼1 , 2009, 0909.2032.

[38]  CNRS,et al.  How was the Hubble sequence 6 Gyr ago , 2009, 0906.2805.

[39]  M. Jarvis,et al.  Probing $\sim L_{*}$ Lyman-break Galaxies at $z\approx 7$ in GOODS-South with WFC3 on HST , 2009, 0910.1098.

[40]  C. Firmani,et al.  Can galaxy outflows and re-accretion produce a downsizing in the specific star-formation rate of late-type galaxies? , 2009, 0909.5188.

[41]  O. University,et al.  Photometric selection of z∼ 5 Lyman break galaxies in the ESO Remote Galaxy Survey , 2009, 0909.0746.

[42]  L. Cortese,et al.  Evolutionary paths to and from the red sequence: star formation and H i properties of transition galaxies at z∼ 0 , 2009, 0908.3564.

[43]  M. Graham,et al.  THE CLOWES–CAMPUSANO LARGE QUASAR GROUP SURVEY. I. GALEX SELECTED SAMPLE OF LYMAN BREAK GALAXIES AT z ∼ 1 , 2009, 0906.4058.

[44]  R. D. L. F. Marcos,et al.  Hierarchical star formation in the Milky Way disk , 2009, 0905.1889.

[45]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[46]  A. Omont,et al.  INFRARED SPECTROGRAPH SPECTROSCOPY AND MULTI-WAVELENGTH STUDY OF LUMINOUS STAR-FORMING GALAXIES AT z ≃ 1.9 , 2009, 0904.4479.

[47]  P. Hall,et al.  A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC) , 2009, 0903.3051.

[48]  Y. Wadadekar,et al.  REST-FRAME UV VERSUS OPTICAL MORPHOLOGIES OF GALAXIES USING SÉRSIC PROFILE FITTING: THE IMPORTANCE OF MORPHOLOGICAL K-CORRECTION , 2009, 0901.2046.

[49]  S. White,et al.  The distribution of stellar mass in the low‐redshift Universe , 2009, 0901.0706.

[50]  B. Garilli,et al.  THE DEPENDENCE OF STAR FORMATION ACTIVITY ON STELLAR MASS SURFACE DENSITY AND SERSIC INDEX IN zCOSMOS GALAXIES AT 0.5 < z < 0.9 COMPARED WITH SDSS GALAXIES AT 0.04 < z < 0.08 , 2009, 0901.0550.

[51]  S. White,et al.  The formation and survival of discs in a ΛcDM universe , 2008, 0812.0976.

[52]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[53]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[54]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[55]  H. Hildebrandt,et al.  Calibration update of the COMBO-17 CDFS catalogue , 2008, 0809.2066.

[56]  S. Maddox,et al.  The star formation history of K-selected galaxies , 2008, 0808.3139.

[57]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[58]  J. Newman,et al.  The DEEP2 Galaxy Redshift Survey: environments of post-starburst galaxies at z∼ 0.1 and ∼0.8 , 2008, 0805.0004.

[59]  I. Smail,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2008, 0806.3968.

[60]  R. Croft,et al.  Galaxy morphology, kinematics and clustering in a hydrodynamic simulation of a Λ cold dark matter universe , 2008, 0803.4003.

[61]  J. Silverman,et al.  Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies Using X-Ray Emission: Results from the Chandra Deep Fields , 2008, 0803.3620.

[62]  L. Zaninetti A NEW LUMINOSITY FUNCTION FOR GALAXIES AS GIVEN BY THE MASS–LUMINOSITY RELATIONSHIP , 2008, 0803.1098.

[63]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[64]  E. Floc’h,et al.  Star formation history of galaxies from z = 0 to z = 0.7 : A backward approach to the evolution of star-forming galaxies , 2008, 0803.0414.

[65]  S. Faber,et al.  Downsizing by shutdown in red galaxies , 2008, 0801.1673.

[66]  G. Kauffmann,et al.  Radio jets in galaxies with actively accreting black holes : new insights from the SDSS , 2007, 0709.2911.

[67]  H. Rix,et al.  GEMS Survey Data and Catalog , 2005, astro-ph/0510782.

[68]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[69]  G. Kauffmann,et al.  Interaction-induced star formation in a complete sample of 105 nearby star-forming galaxies , 2007, 0711.3792.

[70]  Yosuke Minowa,et al.  Accepted for publication in Astrophysical Journal Supplement 20070912 Preprint typeset using L ATEX style emulateapj v. 10/09/06 ADAPTIVE OPTICS REST-FRAME V-BAND IMAGING OF LYMAN BREAK GALAXIES AT Z ∼ 3: HIGH-SURFACE DENSITY DISK-LIKE GALAXIES? 1 , 2022 .

[71]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[72]  R. Falomo,et al.  Do Local Analogs of Lyman Break Galaxies Exist? , 2007, 0706.2948.

[73]  D. Burgarella,et al.  Lyman break galaxies at z ∼ 1 and the evolution of dust attenuation in star-forming galaxies with redshift , 2007, 0706.0810.

[74]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[75]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[76]  H. Rix,et al.  The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.

[77]  Garching,et al.  Lyman-break galaxies at z ~ 5 – I. First significant stellar mass assembly in galaxies that are not simply z ~ 3 LBGs at higher redshift , 2007, astro-ph/0701725.

[78]  Z. Shao,et al.  Inclination-dependent Luminosity Function of Spiral Galaxies in the Sloan Digital Sky Survey: Implications for Dust Extinction , 2006, astro-ph/0611714.

[79]  A. Szalay,et al.  The Diverse Properties of the Most Ultraviolet-Luminous Galaxies Discovered by GALEX , 2006, astro-ph/0609415.

[80]  J. Newman,et al.  The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field , 2006, astro-ph/0608569.

[81]  C. Conselice,et al.  Evolution in the Halo Masses of Isolated Galaxies between z ~ 1 and z ~ 0: From DEEP2 to SDSS , 2006, astro-ph/0607204.

[82]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[83]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[84]  Z. Shao,et al.  Colour–magnitude relations of late-type galaxies , 2006, astro-ph/0607465.

[85]  H. Rix,et al.  The stellar masses of 25 000 galaxies at 0.2 ≤ z ≤ 1.0 estimated by the COMBO-17 survey , 2006 .

[86]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[87]  S. Phleps,et al.  The Merger Rate of Massive Galaxies , 2006, astro-ph/0602038.

[88]  O. Ilbert,et al.  Ultraviolet-to-far infrared properties of Lyman break galaxies and luminous infrared galaxies at z ∼ 1 , 2006, astro-ph/0601123.

[89]  M. Blanton Galaxies in SDSS and DEEP2: A Quiet Life on the Blue Sequence? , 2005, astro-ph/0512127.

[90]  Chien Y. Peng,et al.  GEMS: The Surface Brightness and Surface Mass Density Evolution of Disk Galaxies , 2005 .

[91]  P. Schneider,et al.  GaBoDS: The Garching-Bonn Deep Survey V. Data release of the ESO Deep-Public-Survey ? , 2005, astro-ph/0509882.

[92]  F. Castander,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRIz' Images and Catalogs of the Extended Hubble Deep Field-South , 2005, astro-ph/0509202.

[93]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[94]  A. Szalay,et al.  The Properties of Ultraviolet-luminous Galaxies at the Current Epoch , 2004, astro-ph/0412577.

[95]  A. Szalay,et al.  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[96]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[97]  R. J. Ivison,et al.  The Rest-Frame Optical Properties of SCUBA Galaxies , 2004, astro-ph/0412574.

[98]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 ≲ z ≲ 2.5 , 2004, astro-ph/0409041.

[99]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[100]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[101]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[102]  R. Bender,et al.  The Munich Near-Infrared Cluster Survey (MUNICS). VI. The Stellar Masses of K-Band-selected Field Galaxies to z ~ 1.2 , 2004 .

[103]  M. Longair The Cosmic Century: A History of Astrophysics and Cosmology , 2004 .

[104]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[105]  H. Rix,et al.  GEMS: Galaxy Evolution from Morphologies and SEDs , 2004, astro-ph/0401427.

[106]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[107]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[108]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[109]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[110]  M. Bershady,et al.  A Direct Measurement of Major Galaxy Mergers at z ≲ 3 , 2003, astro-ph/0306106.

[111]  Puragra Guhathakurta,et al.  The DEEP2 Galaxy Redshift Survey: Spectral Classification of Galaxies at z ∼ 1 , 2003, astro-ph/0305587.

[112]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[113]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[114]  J. Brinkmann,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[115]  Jia-Sheng Huang,et al.  H-band observations of the Chandra Deep Field South ? , 2002, astro-ph/0211247.

[116]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[117]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[118]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[119]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[120]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[121]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[122]  M. Steinmetz,et al.  The hierarchical origin of galaxy morphologies , 2002, astro-ph/0202466.

[123]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[124]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[125]  Garching,et al.  The host haloes of Lyman-break galaxies and submillimetre sources , 2001, astro-ph/0102436.

[126]  France.,et al.  The ultraviolet visibility and quantitative morphology of galactic disks at low and high redshift , 2001, astro-ph/0101344.

[127]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[128]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[129]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. XIV. Galaxy Morphology in the Hubble Deep Field (North) and Its Flanking Fields to z = 1.2 , 2000, astro-ph/0008051.

[130]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[131]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[132]  J. Graham,et al.  Measurement of [O III] Emission in Lyman-Break Galaxies , 2000, astro-ph/0005254.

[133]  G. Efstathiou A model of supernova feedback in galaxy formation , 2000, astro-ph/0002245.

[134]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[135]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[136]  A. Blain Dust temperature and the submillimetre—radio flux density ratio as a redshift indicator for distant galaxies , 1999, astro-ph/9906438.

[137]  K. I. O. Astronomy,et al.  The star formation history of the Hubble sequence: spatially resolved colour distributions of intermediate-redshift galaxies in the Hubble Deep Field , 1998, astro-ph/9807140.

[138]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[139]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[140]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[141]  G. Kauffmann,et al.  The K-band luminosity function at z = 1: a powerful constraint on galaxy formation theory , 1998, astro-ph/9802233.

[142]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[143]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[144]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[145]  M. Giavalisco,et al.  Hubble space telescope imaging of star-forming galaxies at redshifts Z>3 , 1996, astro-ph/9603062.

[146]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[147]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[148]  C. Steidel,et al.  Lyman Limit Imaging of High Redshift Galaxies. III. New Observations of 4 QSO Fields , 1995, astro-ph/9509089.

[149]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[150]  G. A. Croes,et al.  FITS++: An Object-Oriented Set of C++ Classes to Support FITS , 1997 .

[151]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[152]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[153]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[154]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[155]  E. Salpeter The Luminosity function and stellar evolution , 1955 .