An Explanation for the Logarithmic Connection between Linear and Morphological System Theory

Dorst/van den Boomgaard and Maragos introduced the slope transform as the morphological equivalent of the Fourier transform. Generalising the conjugacy operation from convex analysis it formed the basis of a morphological system theory that bears an almost logarithmic relation to linear system theory; a connection that has not been fully understood so far. Our article provides an explanation by disclosing that morphology in essence is linear system theory in specific algebras. While linear system theory uses the standard plus-prod algebra, morphological system theory is based on the max-plus algebra and the min-plus algebra. We identify the nonlinear operations of erosion and dilation as linear convolutions in the latter algebras. The logarithmic Laplace transform makes a natural appearance as it corresponds to the conjugacy operation in the max-plus algebra. Its conjugate is given by the so-called Cramer transform. Originating from stochastics, the Cramer transform maps Gaussians to quadratic functions and relates standard convolution to erosion. This fundamental transform relies on the logarithm and constitutes the direct link between linear and morphological system theory. Many numerical examples are presented that illustrate the convexifying and smoothing properties of the Cramer transform.

[1]  F. Oberhettinger,et al.  Tables of Laplace Transforms , 1973 .

[2]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[3]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[4]  Marcel J. T. Reinders,et al.  Image sharpening by morphological filtering , 2000, Pattern Recognit..

[5]  Leo Dorst,et al.  Morphological signal processing and the slope transform , 1994, Signal Process..

[6]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[7]  Henk J. A. M. Heijmans Scale-Spaces, PDE's, and Scale-Invariance , 2001, Scale-Space.

[8]  P. Lafrance,et al.  Digital filters , 1974, Proceedings of the IEEE.

[9]  Wiro J. Niessen,et al.  Pseudo-Linear Scale-Space Theory , 2004, International Journal of Computer Vision.

[10]  Petros Maragos Morphological Systems Theory: Slope Transforms, Max - Min Differential Equations, Envelope Filters, and Sampling , 1994, ISMM.

[11]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[12]  R. Schafer,et al.  Morphological systems for multidimensional signal processing , 1990, Proc. IEEE.

[13]  Paul T. Jackway,et al.  Gradient watersheds in morphological scale-space , 1996, IEEE Trans. Image Process..

[14]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[15]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[16]  Werner Nagel Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Edited by Jean Serra , 1870 .

[17]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[18]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[19]  Henk J. A. M. Heijmans,et al.  Algebraic Framework for Linear and Morphological Scale-Spaces , 2002, J. Vis. Commun. Image Represent..

[20]  Martin Welk Families of Generalised Morphological Scale Spaces , 2003, Scale-Space.

[21]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[22]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[23]  H. Heijmans Morphological image operators , 1994 .

[24]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[25]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[26]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[27]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[28]  Joachim Weickert,et al.  An Explanation for the Logarithmic Connection between Linear and Morphological Systems , 2003, Scale-Space.

[29]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[30]  G. Doetsch Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation , 1981 .

[31]  Heinz Bauer,et al.  Maß- und Integrationstheorie , 1992 .

[32]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Luc Florack Non-Linear Scale-Spaces Isomorphic to the Linear Case with Applications to Scalar, Vector and Multispectral Images , 2004, International Journal of Computer Vision.

[34]  Atsushi Imiya,et al.  Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.

[35]  Robert Azencott,et al.  Ecole d'eté de probabilités de Saint-Flour VIII-1978 , 1980 .

[36]  J. Quadrat,et al.  BELLMAN PROCESSES , 1994 .

[37]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[38]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[39]  Petros Maragos,et al.  Differential morphology and image processing , 1996, IEEE Trans. Image Process..

[40]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .