Fractal analysis and thermal‐elastic modeling of a subvolcanic magmatic breccia: The role of post‐fragmentation partial melting and thermal fracture in clast size distributions

[1] This paper examines the development of a subvolcanic magmatic breccia located along the contact of a granitic intrusion using fractal analysis and thermal-elastic modeling. The breccia grades from clast-supported, angular clasts adjacent to unfractured host rock to isolated, rounded clasts supported by the granitic matrix adjacent to the intrusion. Field observations point to an explosive breccia mechanism, and clast size distribution analysis yields fractal dimensions (Ds > 3) that exceed the minimum value known to result from explosion (Ds > 2.5). Field observations, clast size distribution data, clast circularity data, and boundary roughness fractal dimension data suggest that the clast sizes and shapes reflect post-brecciation modification by partial melting and thermal fracture. Numerical modeling is employed to explore the possible thermal-elastic effects on the size distribution of clasts. Instantaneous immersion is assumed for metasedimentary clasts of a fractal size distribution in a superheated granitic matrix for different matrix volume percentages. Thermal analysis is restricted to conductive heat transfer corrected for latent heat. Partial melting of metasedimentary clasts is an effective secondary modification process that was probably responsible for markedly altering the clast size distribution for clast populations adjacent to the intrusion. Diabase clasts experienced late-stage fracture due to the instantaneous thermal pulse in which angular clasts with high surface area to volume ratios were preferentially fractured, although this process does not appear to have markedly influenced the clast size distribution.

[1]  J. Johnston,et al.  Fractal analysis of a mineralised vein deposit: Curraghinalt gold deposit, County Tyrone , 1996 .

[2]  Donald L. Turcotte,et al.  Geodynamics : applications of continuum physics to geological problems , 1982 .

[3]  Kurt Stüwe,et al.  Geodynamics of the lithosphere , 2002 .

[4]  A. Tsutsumi Size distribution of clasts in experimentally produced pseudotachylytes , 1999 .

[5]  S. Clark,et al.  Handbook of physical constants , 1966 .

[6]  E. Perfect,et al.  Fractal Analysis of Maine's Glaciated Shoreline Tests Established Coastal Classification Scheme , 2006 .

[7]  R. Wiebe The Pleasant Bay Layered Gabbro—Diorite, Coastal Maine: Ponding and Crystallization of Basaltic Injections into a Silicic Magma Chamber , 1993 .

[8]  Masahiko Osada,et al.  Constituent material properties and clast-size distribution of volcanic breccia , 2002 .

[9]  D. Kerrick Overview of contact metamorphism , 1991 .

[10]  D. Bérubé,et al.  High precision boundary fractal analysis for shape characterization , 1999 .

[11]  O. Bachmann,et al.  Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics , 2010 .

[12]  H. Taniguchi,et al.  Effects of explosion energy and depth to the formation of blast wave and crater: Field Explosion Experiment for the understanding of volcanic explosion , 2001 .

[13]  H. Brittain Particle-size distribution. Part I. Representations of particle representations of partide shape, size, and distribution , 2001 .

[14]  K. Furlong,et al.  Modeling thermal regimes , 1991 .

[15]  Hongliang He,et al.  Prediction of fragment number and size distribution in dynamic fracture , 1999 .

[16]  W. Barnett Subsidence breccias in kimberlite pipes—an application of fractal analysis , 2004 .

[17]  P. Lipman The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths , 1984 .

[18]  J. Hogan,et al.  Compositional variation of plutonism in the coastal Maine magmatic province; mode of origin and tectonic setting , 1989 .

[19]  Ronald L. Biegel,et al.  Fractals, fault-gouge, and friction , 1989 .

[20]  R. Goodman Introduction to Rock Mechanics , 1980 .

[21]  J. Patterson,et al.  Gravity studies of subsurface mass distributions of granitic rocks in Maine and New Hampshire , 1982 .

[22]  K. Stuwe,et al.  Geodynamics of the Lithosphere: An Introduction , 2003 .

[23]  N. Lubick,et al.  Volcanic Expression of Bimodal Magmatism: The Cranberry Island-Cadillac Mountain Complex, Coastal Maine , 1995, The Journal of Geology.

[24]  A. H. Clark The slump breccias of the Toquepala porphyry Cu(-Mo) deposit, Peru; implications for fragment rounding in hydrothermal breccias , 1990 .

[25]  D. Farris,et al.  CONTAMINATION OF SILICIC MAGMAS AND FRACTAL FRAGMENTATION OF XENOLITHS IN PALEOCENE PLUTONS ON KODIAK ISLAND, ALASKA , 2007 .

[26]  L. Kriegsman,et al.  Partial melting in crustal xenoliths and anatectic migmatites: a comparison , 2001 .

[27]  P. Manetti,et al.  A 550-year-old Plinian eruption at El Chichón Volcano, Chiapas, Mexico: Explosive volcanism linked to reheating of the magma reservoir , 2003 .

[28]  K. Furlong,et al.  Chapter 10. MODELING THERMAL REGIMES , 1991 .

[29]  H. Nagahama,et al.  Fractal dimension and fracture of brittle rocks , 1993 .

[30]  V. Lorenz,et al.  Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes , 2007 .

[31]  Pierfrancesco Dellino,et al.  Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian islands, Italy) , 1996 .

[32]  M. Kohn,et al.  P -T paths from anatectic pelites , 1999 .

[33]  R. Lama Handbook on Mechanical Properties of Rocks , 1978 .

[34]  M. Thiercelin,et al.  Explosion Dynamics in Saturated Rocks and Solids , 2006 .

[35]  C. A. Chapman Diabase-Granite Composite Dikes, with Pillow-Like Structure, Mount Desert Island, Maine , 1962, The Journal of Geology.

[36]  E. Perfect,et al.  Fractal models for the fragmentation of rocks and soils: a review , 1997 .

[37]  T. Baker,et al.  Granite-related overpressure and volatile release in the mid crust: fluidized breccias from the Cloncurry District, Australia , 2006 .

[38]  M. Jébrak,et al.  Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution , 1997 .

[39]  C. Clark,et al.  A coupled micro- and macrostructural approach to the analysis of fluid induced brecciation, Curnamona Province, South Australia , 2006 .

[40]  H. Nekvasil Calculation of equilibrium crystallization paths of compositionally simple hydrous felsic melts , 1988 .

[41]  S. Seaman,et al.  Late Silurian volcanism in coastal Maine: The Cranberry Island series , 1999 .

[42]  Wenyi Yan,et al.  Investigation of a hydraulic impact: a technology in rock breaking , 2009 .

[43]  C. Clark,et al.  Hydrothermal brecciation due to fluid pressure fluctuations: examples from the Olary Domain, South Australia , 2003 .

[44]  D. B. Clarke ASSIMILATION OF XENOCRYSTS IN GRANITIC MAGMAS: PRINCIPLES, PROCESSES, PROXIES, AND PROBLEMS , 2007 .

[45]  J. Ague,et al.  Effect of metamorphic reactions on thermal evolution in collisional orogens , 2009 .

[46]  Paul D. Bons,et al.  New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks , 2001 .

[47]  J. Sanchidrián,et al.  Energy components in rock blasting , 2007 .

[48]  T. Blenkinsop Cataclasis and processes of particle size reduction , 1991 .

[49]  F. Bascom The Geology of Mount Desert Island , 1919 .

[50]  T. Shimamoto,et al.  An argument against the crush origin of pseudotachylytes based on the analysis of clast-size distribution , 1992 .

[51]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[52]  R. Wiebe,et al.  Desilication veins in the Cadillac Mountain granite (Maine, USA): a record of reversals in the SiO2 solubility of H2O‐rich vapour released during subsolidus cooling , 1998 .

[53]  P. Osberg,et al.  A stratigraphic synthesis of eastern Maine and western New Brunswick , 1989 .

[54]  M. Goodchild,et al.  The fractal properties of topography: A comparison of methods , 1992 .

[55]  S. Johnson,et al.  Ring complexes in the Peninsular Ranges Batholith, Mexico and the USA: magma plumbing systems in the middle and upper crust , 2002 .

[56]  M. E. Kipp,et al.  10 – DYNAMIC ROCK FRAGMENTATION , 1987 .

[57]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[58]  W. Hartmann Terrestrial, lunar, and interplanetary rock fragmentation , 1969 .

[59]  J. C. Jaeger The cooling of irregularly shaped igneous bodies , 1961 .

[60]  B. Harte,et al.  Evolution of structurally contrasting anatectic migmatites in the 3‐kbar Ballachulish aureole, Scotland , 1988 .

[61]  G. Foster,et al.  Exploring the plutonic–volcanic link: a zircon U–Pb, Lu–Hf and O isotope study of paired volcanic and granitic units from southeastern Australia , 2006, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[62]  M. D. Wit,et al.  Fractal river networks of Southern Africa , 2005 .

[63]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[64]  M. Jébrak,et al.  Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada): from fractal analysis to structural significance , 2002 .

[65]  D. DePaolo,et al.  A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions , 2003 .

[66]  E. Sawyer,et al.  Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an Example from St. Malo, France , 2001 .

[67]  P. Marianelli,et al.  Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite , 2006 .

[68]  Ronald L. Biegel,et al.  The kinematics of gouge deformation , 1987 .

[69]  Heather L. Petcovic,et al.  Modeling magma flow and cooling in dikes: Implications for emplacement of Columbia River flood basalts , 2005 .

[70]  Roy E. Plotnick,et al.  Fractal Analysis of the Complexity of United States Coastlines , 1998 .

[71]  Zhu Xiaohua,et al.  On Fractal Dimensions of China's Coastlines , 2004 .

[72]  B. Dutrow,et al.  Evolution of fluid pressure and fracture propagation during contact metamorphism , 1995 .

[73]  M. Alidibirov,et al.  Grain-size characteristics of experimental pyroclasts of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature , 2002, Bulletin of Volcanology.

[74]  A. Glazner,et al.  Is stoping a volumetrically significant pluton emplacement process , 2006 .

[75]  Michael Denis Higgins,et al.  Measurement of crystal size distributions , 2000 .

[76]  R. Metcalf Volcanic–plutonic links, plutons as magma chambers and crust–mantle interaction: a lithospheric scale view of magma systems , 2004, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[77]  S. Manson Behavior of materials under conditions of thermal stress , 1953 .

[78]  Nicolas Rivier,et al.  Size‐distribution in sudden breakage by the use of entropy maximization , 1988 .

[79]  K. Mair,et al.  Quantifying granular material and deformation: Advantages of combining grain size, shape, and mineral phase recognition analysis , 2009 .

[80]  Slobodan Jaramaz,et al.  Fragment Size Distribution in Dynamic Fragmentation: Geometric Probability Approach , 2008 .

[81]  Donald L. Turcotte,et al.  Fractals and fragmentation , 1986 .

[82]  K. Pye,et al.  GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments , 2001 .

[83]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[84]  Brian Klinkenberg,et al.  A review of methods used to determine the fractal dimension of linear features , 1994 .

[85]  Chris Marone,et al.  Particle-size distribution and microstructures within simulated fault gouge , 1989 .

[86]  G. R. Adhikari,et al.  Comparison of Fragmentation Measurements by Photographic and Image Analysis Techniques , 2006 .

[87]  F. Bea Crystallization Dynamics of Granite Magma Chambers in the Absence of Regional Stress: Multiphysics Modeling with Natural Examples , 2010 .

[88]  D. B. Clarke,et al.  Exploding xenoliths and the absence of ‘elephants’ graveyards’ in granite batholiths , 1998 .

[89]  Robert F. Andrle THE WEST COAST OF BRITAIN: STATISTICAL SELF‐SIMILARITY VS. CHARACTERISTIC SCALES IN THE LANDSCAPE , 1996 .

[90]  K. Kelfoun,et al.  Sustained blasts during large volcanic eruptions , 2000 .

[91]  R. Scandone Factors controlling the temporal evolution of explosive eruptions , 1996 .

[92]  M. Manga,et al.  Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering) , 2009 .

[93]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[94]  Explosive fragmentation of materials , 1995 .

[95]  Martin Allen,et al.  Measurement of boundary fractal dimensions: review of current techniques , 1995 .

[96]  Robert H. Osborne,et al.  Self-similar cataclasis in the formation of fault gouge , 1986 .

[97]  A. Álvarez-Valero,et al.  Melt-producing versus melt-consuming reactions in pelitic xenoliths and migmatites , 2010 .

[98]  Li Xibing,et al.  Fractal characteristics of rock fragmentation at strain rate of 100 – 102 s−1 , 2006 .

[99]  J. C. Jaeger Thermal effects of intrusions , 1964 .

[100]  Pierfrancesco Dellino,et al.  The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance , 2002 .