Mittelwertungleichungen für Lösungen gewisser Differenzengleichungen
暂无分享,去创建一个
SummaryLet Γ andψ = Γ′/Γ denote the Gamma function and the Psi function respectively. Let furtherλ1,⋯,λn ∈ ℝ+ denote weights,λ1 +⋯+λ = 1. The following pair of inequalities is proved:
$$\begin{gathered} \Gamma (x_1^{\lambda _1 } \cdot \cdot \cdot x_n^{\lambda _n } ) \leqslant \Gamma ^{\lambda _1 } (x_1 ) \cdot \cdot \cdot \Gamma ^{\lambda _n } (x_n )(x_1 ,...,x_n \geqslant \alpha ), \hfill \\ \Gamma (x_1^{\lambda _1 } \cdot \cdot \cdot x_n^{\lambda _n } ) \geqslant \Gamma ^{\lambda _1 } (x_1 ) \cdot \cdot \cdot \Gamma ^{\lambda _n } (x_n )(0< x_1 ,...,x_n \leqslant \alpha ) \hfill \\ \end{gathered} $$
where α is the unique positive root of the equationψ(α) + αψ′(α) = 0. The first of the above inequalities is also valid for allx1,⋯,xn ∈ ℝ+ under the restraint
$$x_1^{\lambda _1 } \cdot \cdot \cdot x_n^{\lambda _n } \geqslant \beta $$
whereβ is the unique positive root of the equationβψ(β) = −1. This result is extended to convex solutionsf: ℝ+ → ℝ of the difference equationf(x + 1) − f(x) = ϕ(x) for certain functionsϕ: ℝ+ → ℝ. Under suitable conditions the inequality
$$\lambda _1 f(x_1 ) + \cdot \cdot \cdot + \lambda _n f(x_n ) \geqslant f(x_1^{\lambda _1 } \cdot \cdot \cdot x_n^{\lambda _n } )$$
is obtained for allx1,⋯, xn ∈ ℝ+ satisfying
$$x_1^{\lambda _1 } \cdot \cdot \cdot x_n^{\lambda _n } \geqslant 1$$
.
[1] W. Krull. Bemerkungen zur Differenzengleichung g (x + 1) − g(x) = φ (x). Helmut Hasse zum 50. Geburtstag , 1948 .
[2] W. Gautschi. Some Mean Value Inequalities for the Gamma Function , 1974 .
[3] Special Functions: The Gamma and Beta Functions , 1978 .
[4] An Inequality for Krull Solutions of a Certain Difference Equation , 1983 .
[5] Charakterisierungen und Ungleichungen für die q-Factorial-Funktionen , 1984 .