Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL

[1]  W. Fenton,et al.  GroEL, GroES, and ATP-dependent folding and spontaneous assembly of ornithine transcarbamylase. , 1993, The Journal of biological chemistry.

[2]  N. Cowan,et al.  Two cofactors and cytoplasmic chaperonin are required for the folding of alpha- and beta-tubulin , 1993, Molecular and cellular biology.

[3]  K. Willison,et al.  Protein folding in the cell: functions of two families of molecular chaperone, hsp 60 and TF55-TCP1. , 1993 .

[4]  F. Hartl,et al.  Function in protein folding of TRiC, a cytosolic ring complex containing TCP‐1 and structurally related subunits. , 1992, The EMBO journal.

[5]  W. Baumeister,et al.  Chaperonin‐mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. , 1992, The EMBO journal.

[6]  F. Hartl,et al.  Prevention of protein denaturation under heat stress by the chaperonin Hsp60. , 1992, Science.

[7]  E. Nudler,et al.  Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Michael B. Yaffe,et al.  TCP1 complex is a molecular chaperone in tubulin biogenesis , 1992, Nature.

[9]  Rody P. Cox,et al.  Chaperonins GroEL and GroES promote assembly of heterotetramers (α2β2) of mammalian mitochondrial branched-chain α-keto acid decarboxylase in Escherichia coli , 1992 .

[10]  John O. Thomas,et al.  A cytoplasmic chaperonin that catalyzes β-actin folding , 1992, Cell.

[11]  F. Hartl,et al.  Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. , 1992, Annual review of biophysics and biomolecular structure.

[12]  R. Hallberg,et al.  Cytochromes c 1 and b 2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism , 1992, Cell.

[13]  G. Walker,et al.  Coexpression of UmuD' with UmuC suppresses the UV mutagenesis deficiency of groE mutants , 1992, Journal of bacteriology.

[14]  F. Hartl,et al.  Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding , 1992, Nature.

[15]  L. Gierasch,et al.  Renaturation of citrate synthase: Influence of denaturant and folding assistants , 1992, Protein science : a publication of the Protein Society.

[16]  G. Lorimer,et al.  Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins , 1992, Protein science : a publication of the Protein Society.

[17]  P O Olins,et al.  Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. , 1992, The Journal of biological chemistry.

[18]  L. Gierasch,et al.  Different conformations for the same polypeptide bound to chaperones DnaK and GroEL , 1992, Nature.

[19]  J. Sambrook,et al.  Protein folding in the cell , 1992, Nature.

[20]  J. Rothman,et al.  Peptide-binding specificity of the molecular chaperone BiP , 1991, Nature.

[21]  H. Schellhorn,et al.  Indirect stimulation of recombination in Escherichia coli K-12: dependence on recJ, uvrA, and uvrD , 1991, Journal of bacteriology.

[22]  F. Hartl,et al.  Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate , 1991, Nature.

[23]  M. Culbertson,et al.  The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes , 1991, Molecular and cellular biology.

[24]  R. Jaenicke,et al.  GroE facilitates refolding of citrate synthase by suppressing aggregation. , 1991, Biochemistry.

[25]  C. Gross,et al.  DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. , 1990, Genes & development.

[26]  A. Horwich,et al.  The mitochondrial chaperonin hsp60 is required for its own assembly. , 1990 .

[27]  G. Lorimer,et al.  Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP , 1989, Nature.

[28]  R. Larossa,et al.  Demonstration by genetic suppression of interaction of GroE products with many proteins , 1989, Nature.

[29]  C. Ueguchi,et al.  Effects of mutations in heat‐shock genes groES and groEL on protein export in Escherichia coli. , 1989, The EMBO journal.

[30]  S. S. Smith,et al.  Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. , 1989, Nucleic acids research.

[31]  C. Georgopoulos,et al.  The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures , 1989, Journal of bacteriology.

[32]  F. Hartl,et al.  Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria , 1989, Nature.

[33]  G. Lorimer,et al.  GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli , 1989, Nature.

[34]  C. Gross,et al.  Escherichia coli heat shock gene mutants are defective in proteolysis. , 1988, Genes & development.

[35]  Roger W. Hendrix,et al.  Homologous plant and bacterial proteins chaperone oligomeric protein assembly , 1988, Nature.

[36]  K. Isono,et al.  The physical map of the whole E. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library , 1987, Cell.

[37]  A. Horwich,et al.  Targeting of pre-ornithine transcarbamylase to mitochondria: Definition of critical regions and residues in the leader peptide , 1986, Cell.

[38]  S. Busby,et al.  Isolation of mutant promoters in the Escherichia coli galactose operon using local mutagenesis on cloned DNA fragments. , 1982, Journal of Molecular Biology.

[39]  A. Horwich,et al.  Expression of the gene for the polyoma small T antigen in Escherichia coli , 1980, Journal of virology.

[40]  L. Rosenberg,et al.  Isolation and characterization of ornithine transcarbamylase from normal human liver. , 1978, The Journal of biological chemistry.

[41]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[42]  A. C. Chang,et al.  Construction of biologically functional bacterial plasmids in vitro. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. D. Kaiser,et al.  Host participation in bacteriophage lambda head assembly. , 1973, Journal of molecular biology.

[44]  N. Sternberg Properties of a mutant of Escherichia coli defective in bacteriophage λ head formation (groE) , 1973 .

[45]  N. Sternberg Properties of a mutant of Escherichia coli defective in bacteriophage lambda head formation (groE). I. Initial characterization. , 1973, Journal of molecular biology.

[46]  B. Low Rapid Mapping of Conditional and Auxotrophic Mutations in Escherichia coli K-12 , 1973, Journal of bacteriology.

[47]  D. Söll,et al.  Isolation and Partial Characterization of Temperature-Sensitive Escherichia coli Mutants with Altered Leucyl- and Seryl-Transfer Ribonucleic Acid Synthetases , 1971, Journal of bacteriology.

[48]  F. Neidhardt,et al.  The gene‐protein database of Escherichia coli: Edition 5 , 1992, Electrophoresis.

[49]  B. Bachmann,et al.  Derivations and genotypes of some mutant derivatives of Escherichia coli K12 , 1987 .

[50]  J. Ellis Proteins as molecular chaperones , 1987, Nature.

[51]  G. Howlett,et al.  Purification of ornithine transcarbamylase from rat liver by affinity chromatography with immobilized transition-state analog. , 1980, Analytical biochemistry.

[52]  C. Georgopoulos,et al.  Bacterial mutants which block phage assembly. , 1974, Journal of supramolecular structure.