STATISTICAL ANALYSIS AND OPTIMIZATION OF CHAOS BASED BROADBAND COMMUNICATIONS

[1]  W. Schwarz,et al.  Chaos and cryptography , 2001 .

[2]  K. Kelber,et al.  Discrete-time chaotic encryption systems. III. Cryptographical analysis , 1998 .

[3]  Gregory W. Wornell,et al.  Analog error-correcting codes based on chaotic dynamical systems , 1998, IEEE Trans. Commun..

[4]  Michael Peter Kennedy,et al.  FM-DCSK: A robust modulation scheme for chaotic communications , 1998 .

[5]  M. Hasler,et al.  Optimal and suboptimal chaos receivers , 2002, Proc. IEEE.

[6]  Constrained and unconstrained noise reduction on chaotic trajectories , 1999 .

[7]  Michael Gastpar,et al.  To code or not to code , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[8]  J. D. Farmer,et al.  Optimal shadowing and noise reduction , 1991 .

[9]  M. Hasler,et al.  Statistically motivated detection methods for chaos shift keying , 1999 .

[10]  Michael Peter Kennedy,et al.  Recent results for chaotic modulation schemes , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[11]  Jerry M. Mendel,et al.  Lessons in digital estimation theory , 1986 .

[12]  A. Vulpiani,et al.  Predictability: a way to characterize complexity , 2001, nlin/0101029.

[13]  M. Hasler Ergodic chaos shift keying , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[14]  M. Pollicott,et al.  Dynamical Systems and Ergodic Theory , 1998 .

[15]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[16]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[17]  H. G. Bothe Gumowski, I./Mira, C., Dynamique chaotique. Transformations ponctuelles, Transition Ordre‐Désordre. Toulouse, Cepadues Editions 1980. 480 S , 1981 .

[18]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[19]  M. Hasler,et al.  Ergodic chaos shift keying for 2 users , 2001 .

[20]  G. Kolumban,et al.  Differential chaos shift keying : A robust coding for chaotic communication , 1996 .

[21]  Simon Haykin,et al.  Communication Systems , 1978 .

[22]  Thomas Schimming Chaos based modulations from an information theory perspective , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[23]  Haralabos C. Papadopoulos,et al.  Maximum-likelihood estimation of a class of chaotic signals , 1995, IEEE Trans. Inf. Theory.

[24]  Thomas J. Richardson,et al.  An Introduction to the Analysis of Iterative Coding Systems , 2001 .

[25]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[26]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[27]  Hao Bai-lin Elementary Symbolic Dynamics , 1988 .

[28]  Reduced complexity likelihood approximation for chaotic trajectory segments , 2000 .

[29]  Joerg Schweizer Application of chaos to communications , 1999 .

[30]  K. Shanmugan,et al.  Random Signals: Detection, Estimation and Data Analysis , 1988 .

[31]  Michael Peter Kennedy,et al.  Nonlinear analysis of the Colpitts oscillator and applications to design , 1999 .

[32]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[33]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[34]  Martin Hasler,et al.  Separating a chaotic signal from noise and applications , 1999 .

[35]  Maciej Ogorzalek Approximation and compression of arbitrary time-series based on nonlinear dynamics , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[36]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[37]  Wolfgang Schwarz,et al.  Maximum Likelihood Detection of Symbolic Dynamics in Communication Systems with Chaos Shift Keying , 2000 .

[38]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[39]  M. Gotz,et al.  Statistical analysis of chaotic communication schemes , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[40]  G. Kis,et al.  Application of noise reduction to chaotic communications: a case study , 2000 .

[41]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[42]  H. Abarbanel,et al.  Noise reduction in chaotic time series using scaled probabilistic methods , 1991 .

[43]  M. Hasler,et al.  Communication by chaotic signals : the inverse system approach , 1996 .

[44]  T. Schimming,et al.  Kalman filtering of strange attractors , 2000 .

[45]  H. Dedieu,et al.  Maximum likelihood approaches for noncoherent communications with chaotic carriers , 2001 .

[46]  M. Hasler,et al.  Optimal detection of differential chaos shift keying , 2000 .

[47]  Michael Peter Kennedy,et al.  Digital communications using chaos , 2000, Signal Process..

[48]  M. Gotz,et al.  Discrete-time chaotic encryption systems. I. Statistical design approach , 1997 .

[49]  Chaos communication from a maximum likelihood perspective , 1998 .

[50]  John G. Proakis,et al.  Digital Communications , 1983 .

[51]  T. Schimming,et al.  Symbolic dynamics for processing chaotic signal. II. Communication and coding , 2001 .

[52]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[53]  Phase modulated ergodic chaos shift keying , 2001 .

[54]  Yorke,et al.  Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.

[55]  Michael Peter Kennedy,et al.  FM-DCSK: a novel method for chaotic communications , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[56]  Chaos shift keying in the presence of noise: a simple discrete time example , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[57]  Martin Hasler,et al.  Potential of chaos communication over noisy channels - channel coding using chaotic piecewise linear maps , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[58]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[60]  H. Dedieu,et al.  Noise reduction in chaotic time series - an overview , 1998 .

[61]  Tohru Kohda Information sources using chaotic dynamics , 2001 .

[62]  Shlomo Shamai,et al.  Fading Channels: Information-Theoretic and Communication Aspects , 1998, IEEE Trans. Inf. Theory.

[63]  Martin Hasler,et al.  Noise Filtering in chaos-based communication , 2000 .

[64]  Arkady Pikovsky,et al.  On the interaction of strange attractors , 1984 .

[65]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[66]  O. De Feo,et al.  Chaos synchronization in noisy environments using Kalman filters , 2002 .

[67]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[68]  David Luengo,et al.  Bayesian estimation of a class of chaotic signals , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[69]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[70]  Martin Hasler,et al.  Engineering chaos for encryption and broadband communication , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[71]  Wolfgang Schwarz,et al.  Signal modeling using piecewise linear chaotic generators , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[72]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .

[73]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[74]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[75]  Sergio Callegari,et al.  Adaptive median thresholding for the generation of high-data-rate random-like unpredictable binary sequences with chaos , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[76]  T. Schimming,et al.  Symbolic dynamics for processing chaotic signals. I. Noise reduction of chaotic sequences , 2001 .