Distinct tau neuropathology and cellular profiles of an APOE3 Christchurch homozygote protected against autosomal dominant Alzheimer’s dementia

[1]  R. Kalaria,et al.  Evidence of beta amyloid independent small vessel disease in familial Alzheimer's disease , 2022, Brain pathology.

[2]  G. Jicha,et al.  Apolipoprotein E proteinopathy is a major dementia-associated pathologic biomarker in individuals with or without the APOE epsilon 4 allele. , 2021, The American journal of pathology.

[3]  Maxim N. Artyomov,et al.  Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia , 2021, Neuron.

[4]  P. Tariot,et al.  Vascular Lesions, APOE ε4, and Tau Pathology in Alzheimer Disease. , 2021, Journal of neuropathology and experimental neurology.

[5]  Adam P. Silverman,et al.  APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function , 2021, Science Translational Medicine.

[6]  Justin S. Sanchez,et al.  The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography , 2021, Science Translational Medicine.

[7]  Justin S. Sanchez,et al.  Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer’s disease: findings from the Colombia-Boston (COLBOS) biomarker study , 2021, Alzheimer's research & therapy.

[8]  K. Blennow,et al.  A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer’s disease , 2020, Acta Neuropathologica.

[9]  J. Streffer,et al.  Decreased Deposition of Beta-Amyloid 1-38 and Increased Deposition of Beta-Amyloid 1-42 in Brain Tissue of Presenilin-1 E280A Familial Alzheimer’s Disease Patients , 2020, Frontiers in Aging Neuroscience.

[10]  N. Neff,et al.  Molecular characterization of selectively vulnerable neurons in Alzheimer’s Disease , 2020, Nature Neuroscience.

[11]  Enrico Petretto,et al.  A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation , 2019, Nature Neuroscience.

[12]  Justin S. Sanchez,et al.  Resistance to autosomal dominant Alzheimer’s in an APOE3-Christchurch homozygote: a case report , 2019, Nature Medicine.

[13]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[14]  Jesús Ávila,et al.  Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease , 2019, Nature Medicine.

[15]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[16]  Keith A. Johnson,et al.  PET staging of amyloidosis using striatum , 2018, Alzheimer's & Dementia.

[17]  Nancy R. Zhang,et al.  SAVER: Gene expression recovery for single-cell RNA sequencing , 2018, Nature Methods.

[18]  Keith A. Johnson,et al.  Association Between Amyloid and Tau Accumulation in Young Adults With Autosomal Dominant Alzheimer Disease , 2018, JAMA neurology.

[19]  D. Holtzman,et al.  ApoE facilitates the microglial response to amyloid plaque pathology , 2018, The Journal of experimental medicine.

[20]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[21]  Markus Glatzel,et al.  The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. , 2017, Immunity.

[22]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[23]  Nick C. Fox,et al.  Consensus classification of posterior cortical atrophy , 2017, Alzheimer's & Dementia.

[24]  Tanner Koomar,et al.  cerebroViz: an R package for anatomical visualization of spatiotemporal brain data , 2016, Bioinform..

[25]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[26]  Jorge Sepulcre,et al.  Tau positron emission tomographic imaging in aging and early Alzheimer disease , 2016, Annals of neurology.

[27]  Keith A. Johnson,et al.  Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. , 2014, JAMA neurology.

[28]  Bruce R. Rosen,et al.  Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data , 2014, NeuroImage.

[29]  Eric M Reiman,et al.  Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study , 2012, The Lancet Neurology.

[30]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[31]  J. Schneider,et al.  National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease , 2012, Alzheimer's & Dementia.

[32]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[33]  A. McKinney,et al.  Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease , 2010 .

[34]  I. Alafuzoff,et al.  Hyperphosphorylated Tau in the Occipital Cortex in Aged Nondemented Subjects , 2009, Journal of neuropathology and experimental neurology.

[35]  M. Weiner,et al.  Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease* , 2009, Brain : a journal of neurology.

[36]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[37]  K. Jellinger,et al.  Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy , 2005, Acta Neuropathologica.

[38]  S. Love,et al.  Relationship of neurofibrillary pathology to cerebral amyloid angiopathy in Alzheimer's disease , 2005, Neuropathology and applied neurobiology.

[39]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[40]  H. Braak,et al.  Phases of Aβ-deposition in the human brain and its relevance for the development of AD , 2002, Neurology.