ITRF2008 plate motion model

[1] The ITRF2008 velocity field is demonstrated to be of higher quality and more precise than past ITRF solutions. We estimated an absolute tectonic plate motion model made up of 14 major plates, using velocities of 206 sites of high geodetic quality (far from plate boundaries, deformation zones and Glacial Isostatic Adjustment (GIA) regions), derived from and consistent with ITRF2008. The precision of the estimated model is evaluated to be at the level of 0.3 mm/a WRMS. No GIA corrections were applied to site velocities prior to estimating plate rotation poles, as our selected sites are outside the Fennoscandia regions where the GIA models we tested are performing reasonably well, and far from GIA areas where the models would degrade the fit (Antarctica and North America). Our selected velocity field has small origin rate bias components following the three axis (X, Y, Z), respectively 0.41 ± 0.54, 0.22 ± 0.64 and 0.41 ± 0.60 (95 per cent confidence limits). Comparing our model to NNR-NUVEL-1A and the newly available NNR-MORVEL56, we found better agreement with NNR-MORVEL56 than with NNR-NUVEL-1A for all plates, except for Australia where we observe an average residual rotation rate of 4 mm/a. Using our selection of sites, we found large global X-rotation rates between the two models (0.016°/Ma) and between our model and NNR-MORVEL56 of 0.023°/Ma, equivalent to 2.5 mm/a at the Earth surface.

[1]  H. Drewes Combination of VLBI, SLR and GPS Determined Station Velocities for Actual Plate Kinematic and Crustal Deformation Models , 1998 .

[2]  Richard G. Gordon,et al.  No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1 , 1991 .

[3]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[4]  G. Blewitt,et al.  On the stability of a geodetic no‐net‐rotation frame and its implication for the International Terrestrial Reference Frame , 2006 .

[5]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[6]  L. Metivier,et al.  Dynamic mantle density heterogeneities and global geodetic observables , 2010 .

[7]  P. Bird An updated digital model of plate boundaries , 2003 .

[8]  Z. Altamimi,et al.  The worldwide centimetric terrestrial reference frame and its associated velocity field , 1993 .

[9]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[10]  Z. Altamimi,et al.  The impact of a No‐Net‐Rotation Condition on ITRF2000 , 2003 .

[11]  J. Legrand Champ de vitesses de l'ITRF Propriétés cinématiques de la croûte terrestre et Condition de non rotation globale , 2007 .

[12]  S. Owen,et al.  The angular velocities of the plates and the velocity of Earth's centre from space geodesy , 2010 .

[13]  Z. Altamimi,et al.  ITRF2008 contribution to glacial isostatic adjustment and recent ice melting assessment , 2012 .

[14]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[15]  Geoffrey Blewitt,et al.  Effect of annual signals on geodetic velocity , 2002 .

[16]  L. Vermeersen,et al.  Sensitivity of glacial isostatic adjustment models with shallow low-viscosity earth layers to the ice-load history in relation to the performance of GOCE and GRACE , 2005 .

[17]  Archie Paulson,et al.  Limitations on the inversion for mantle viscosity from postglacial rebound , 2007 .

[18]  Donald F. Argus,et al.  Defining the translational velocity of the reference frame of Earth , 2007 .

[19]  Z. Altamimi,et al.  On secular geocenter motion: The impact of climate changes , 2010 .

[20]  R. Steven Nerem,et al.  Ocean mass from GRACE and glacial isostatic adjustment , 2010 .

[21]  Thomas H. Jordan,et al.  Present‐day plate motions , 1977 .

[22]  Geoffrey Blewitt,et al.  Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS , 2011 .

[23]  M. Velli,et al.  Waves and streams in the expanding solar wind , 1996 .

[24]  Peter Steigenberger,et al.  Improved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contribution of Ground-Based Geodetic Observations , 2010 .

[25]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[26]  A. John Haines,et al.  An integrated global model of present‐day plate motions and plate boundary deformation , 2003 .

[27]  Xavier Collilieux,et al.  Global sea-level rise and its relation to the terrestrial reference frame , 2009 .

[28]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[29]  Xavier Collilieux,et al.  Accuracy of the International Terrestrial Reference Frame origin and Earth expansion , 2011 .

[30]  Richard G. Gordon,et al.  Geologically current plate motions , 2010 .

[31]  D. Argus,et al.  Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry , 1996 .

[32]  Grigory M. Steblov,et al.  Current global plate kinematics from GPS (1995–2007) with the plate‐consistent reference frame , 2008 .

[33]  W. Peltier,et al.  Constraining Models of Postglacial Rebound Using Space Geodesy , 2008 .

[34]  C. Demets,et al.  Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame , 2011 .

[35]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[36]  Pascal Gegout,et al.  GGFC Special Bureau for Loading: current status and plans , 2003 .