A bootstrap-based approach for parameter and polyspectral density estimation of a non-minimum phase ARMA process

A bootstrap-based methodology is developed for parameter estimation and polyspectral density estimation in the case of the approximating model of the underlying stochastic process being non-minimum phase autoregressive-moving-average (ARMA) type, given a finite realisation of a single time series data. The method is based on a minimum phase/maximum phase decomposition of the system function together with a time reversal step for the parameter and polyspectral confidence interval estimation. Simulation examples are provided to illustrate the proposed method.

[1]  Visakan Kadirkamanathan,et al.  Parametric polyspectrum density estimation using the bootstrap method , 2007, Signal Process..

[2]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[3]  Peter Händel,et al.  Power Spectral Density Error Analysis of Spectral Subtraction Type of Speech Enhancement Methods , 2007, EURASIP J. Adv. Signal Process..

[4]  J. Franke,et al.  BOOTSTRAPPING STATIONARY AUTOREGRESSIVE MOVING-AVERAGE MODELS , 1992 .

[5]  Elif Derya Übeyli Implementation of automated diagnostic systems: ophthalmic arterial disorders detection case , 2009, Int. J. Syst. Sci..

[6]  Hsin-Chia Fu,et al.  Weighted bootstrap for neural model selection , 2008, Int. J. Syst. Sci..

[7]  Hassan Ghassemian,et al.  Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal , 2012, Comput. Methods Programs Biomed..

[8]  J. Swanepoel,et al.  The bootstrap applied to power spectral density function estimation , 1986 .

[9]  C. M. Lim,et al.  Application of higher order statistics/spectra in biomedical signals--a review. , 2010, Medical engineering & physics.

[10]  José Luis Rojo-Álvarez,et al.  Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection , 2012, Expert Syst. Appl..

[11]  J.W. Pierre,et al.  Bootstrap-based confidence interval estimates for electromechanical modes from multiple output analysis of measured ambient data , 2005, IEEE Transactions on Power Systems.

[12]  Sangit Chatterjee Bootstrapping ARMA Models: Some Simulations , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Zhong-Ping Jiang,et al.  Global Output-Feedback Stabilization for a Class of Stochastic Non-Minimum-Phase Nonlinear Systems , 2007, 2007 IEEE International Conference on Control Applications.

[14]  G. S. Hongyi Li,et al.  Bootstrapping time series models , 1996 .

[15]  A. H. Al-Ibrahim,et al.  Trispectrum deconvolution of linear processes with randomly missing observations , 2002, Int. J. Syst. Sci..

[16]  Andrew Ball,et al.  Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment , 2011 .

[17]  F. A. Farrelly,et al.  Determination of uncertainty in environmental noise measurements by bootstrap method , 2003 .

[18]  R. Polikar,et al.  Bootstrap - Inspired Techniques in Computation Intelligence , 2007, IEEE Signal Processing Magazine.

[19]  Abdefihak M. Zoubir,et al.  Bootstrap Methods and Applications , 2007, IEEE Signal Processing Magazine.

[20]  Ananthram Swami,et al.  On estimating noncausal nonminimum phase ARMA models of non-Gaussian processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[21]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[22]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[23]  W. Härdle,et al.  Bootstrap Methods for Time Series , 2003 .

[24]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[25]  Mia K. Markey,et al.  Parametric Power Spectral Density Analysis of Noise from Instrumentation in MALDI TOF Mass Spectrometry , 2008 .

[26]  U. Rajendra Acharya,et al.  Analysis and Automatic Identification of Sleep Stages Using Higher Order Spectra , 2010, Int. J. Neural Syst..

[27]  Shyh-Jier Huang,et al.  Short-term load forecasting via ARMA model identification including non-Gaussian process considerations , 2003 .

[28]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .