Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism

An adaptive displacement tracking control using only displacement feedback is proposed for a piezo-positioning mechanism. In order to develop a dynamic model to represent the overall system dynamics of the controlled piezo-positioning mechanism, a specific function is proposed. This function that describes the hysteresis of the controlled mechanism contains information on the mechanical motion dynamics, hysteresis friction, disturbance load and parameter variations. Based on the developed model, an adaptive backstepping displacement tracking control is proposed, in which the backstepping adaptation of the specific function and the estimation of the reconstructed state with an unknown specific function are presented. The proposed control design leads to an improved tracking performance, and robustness to the external load-disturbance, and variations in system parameters. The validity of the proposed control design is demonstrated by experimental results.

[1]  Chia-Hsiang Menq,et al.  Hysteresis compensation in electromagnetic actuators through Preisach model inversion , 2000 .

[2]  Yves Bernard,et al.  Dynamic hysteresis modeling based on Preisach model , 2002 .

[3]  K.J. Astrom,et al.  Observer-based friction compensation , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[5]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[6]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[7]  Bernard Friedland,et al.  On adaptive friction compensation , 1992 .

[8]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[9]  John G. Webster,et al.  Sensors and Signal Conditioning , 1993 .

[10]  T. R. Hsu,et al.  MEMS and Microsystems: Design and Manufacture , 2001 .

[11]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[12]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[13]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .

[14]  E. Della Torre,et al.  Fast Preisach-based magnetization model and fast inverse hysteresis model , 1998 .

[15]  Gi Sang Choi,et al.  A study on position control of piezoelectric actuators , 1997, ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics.

[16]  Romeo Ortega,et al.  An adaptive friction compensator for global tracking in robot manipulators , 1998 .

[17]  Isaak D. Mayergoyz,et al.  Dynamic Preisach models of hysteresis , 1988 .

[18]  Darren M. Dawson,et al.  Adaptive control techniques forfrictioncompensation , 1999 .

[19]  Bernard Friedland,et al.  Implementation of a friction estimation and compensation technique , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[20]  C. Canudas de Wit,et al.  Adaptive friction compensation for systems with generalized velocity/position friction dependency , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[21]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[22]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..