Superconvergence analysis for time‐dependent Maxwell's equations in metamaterials
暂无分享,去创建一个
Yunqing Huang | Qun Lin | Jichun Li | Yunqing Huang | Q. Lin | Jichun Li
[1] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[2] Jan Brandts,et al. Superconvergence of mixed finite element semi-discretizations of two time-dependent problems , 1999 .
[3] Qun Lin,et al. Global superconvergence for Maxwell's equations , 2000, Math. Comput..
[4] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[6] Peter Monk,et al. Superconvergence of finite element approximations to Maxwell's equations , 1994 .
[7] Jichun Li. Numerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials , 2009 .
[8] Ningning Yan,et al. Superconvergent derivative recovery for the intermediate finite element family of the second type , 2001 .
[10] Jun Zou,et al. Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.
[11] Yunqing Huang,et al. Recent Advances in Time-Domain Maxwell's Equations in Metamaterials , 2009, HPCA.
[12] Aihua Wood,et al. Finite Element Analysis for Wave Propagation in Double Negative Metamaterials , 2007, J. Sci. Comput..
[13] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[14] Costas M. Soukoulis,et al. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials , 2008 .
[15] Pekka Neittaanmäki,et al. On superconvergence techniques , 1987 .
[16] Jinchao Xu,et al. OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS * , 2009 .
[17] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[18] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[19] Valery Shklover,et al. Negative Refractive Index Materials , 2006 .
[20] M. Raffetto,et al. Existence, uniqueness and finite element approximation of the solution of time‐harmonic electromagnetic boundary value problems involving metamaterials , 2005 .
[21] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[22] Zhiming Chen,et al. Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..
[23] Weiying Zheng,et al. An Adaptive Finite Element Method for the H- ψ Formulation of Time-dependent Eddy Current Problems , 2006, Numerische Mathematik.
[24] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .
[25] M. Raffetto,et al. WELL-POSEDNESS AND FINITE ELEMENT APPROXIMABILITY OF TIME-HARMONIC ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS INVOLVING BIANISOTROPIC MATERIALS AND METAMATERIALS , 2009 .
[26] Ivo Babuška,et al. Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .
[27] Vidar Thomée,et al. Discretization with variable time steps of an evolution equation with a positive-type memory term , 1996 .
[28] K. Sohlberg. A Special Issue on Theoretical and Computational Studies of Interlocked Molecules and Molecular Devices , 2006 .
[29] Qun Lin,et al. Superconvergence analysis for Maxwell's equations in dispersive media , 2007, Math. Comput..