Improved Approximation of Phase-Space Densities on Triangulated Domains Using Discrete Flow Mapping with p-Refinement

We consider the approximation of the phase-space flow of a dynamical system on a triangulated surface using an approach known as Discrete Flow Mapping. Such flows are of interest throughout statistical mechanics, but the focus here is on flows arising from ray tracing approximations of linear wave equations. An orthogonal polynomial basis approximation of the phase-space density is applied in both the position and direction coordinates, in contrast with previous studies where piecewise constant functions have typically been applied for the spatial approximation. In order to improve the tractability of an orthogonal polynomial approximation in both phase-space coordinates, we propose a careful strategy for computing the propagation operator. For the favourable case of a Legendre polynomial basis we show that the integrals in the definition of the propagation operator may be evaluated analytically with respect to position and via a spectrally convergent quadrature rule for the direction coordinate. A generally applicable spectral quadrature scheme for integration with respect to both coordinates is also detailed for completeness. Finally, we provide numerical results that motivate the use of p-refinement in the orthogonal polynomial basis.

[1]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[2]  Gary Froyland,et al.  Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach , 2011, SIAM J. Numer. Anal..

[3]  Andrea Mazzino,et al.  Active and passive fields face to face , 2004, nlin/0407018.

[4]  Sebastian Reich,et al.  Phase Space Volume Conservation under Space and Time Discretization Schemes for the Shallow-Water Equations , 2010 .

[5]  Robin S. Langley,et al.  Wave intensity analysis of high frequency vibrations , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[6]  Stefano Giani,et al.  Boundary element dynamical energy analysis: A versatile method for solving two or three dimensional wave problems in the high frequency limit , 2012, J. Comput. Phys..

[7]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[8]  Hao Wu,et al.  A Hybrid Phase Flow Method for Solving the Liouville Equation in a Bounded Domain , 2011, SIAM J. Numer. Anal..

[9]  Sean F. Wu,et al.  The Boundary Element Method in Acoustics , 2000 .

[10]  B. Engquist,et al.  Computational high frequency wave propagation , 2003, Acta Numerica.

[11]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[12]  N. Totaro,et al.  Review of statistical energy analysis hypotheses in vibroacoustics , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  R. Lyon,et al.  Theory and Application of Statistical Energy Analysis , 2014 .

[14]  Vincent Cotoni,et al.  Validity diagrams of statistical energy analysis , 2010 .

[15]  P. Cvitanović,et al.  How well can one resolve the state space of a chaotic map? , 2009, Physical review letters.

[16]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[17]  Hailiang Liu,et al.  Superposition of Multi-Valued Solutions in High Frequency Wave Dynamics , 2008, J. Sci. Comput..

[18]  Lexing Ying,et al.  The phase flow method , 2006, J. Comput. Phys..

[19]  John A. DeSanto Scalar wave theory : Green's functions and applications , 1992 .

[20]  Gerhard Keller,et al.  Ruelle?Perron?Frobenius spectrum for Anosov maps , 2002 .

[21]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[22]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[23]  R. H. Lyon,et al.  Statistical Analysis of Power Injection and Response in Structures and Rooms , 1969 .

[24]  G Tanner,et al.  Dynamical energy analysis for built-up acoustic systems at high frequencies. , 2010, The Journal of the Acoustical Society of America.

[25]  Christopher Bose,et al.  The exact rate of approximation in Ulam's method , 2000 .

[26]  C. Schütte,et al.  Supplementary Information for “ Constructing the Equilibrium Ensemble of Folding Pathways from Short Off-Equilibrium Simulations ” , 2009 .

[27]  S. Ulam Problems in modern mathematics , 1964 .

[28]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[29]  Gregor Tanner,et al.  Dynamical energy analysis on mesh grids: A new tool for describing the vibro-acoustic response of complex mechanical structures , 2014 .

[30]  Shi Jin,et al.  A Hamiltonian-Preserving Scheme for the Liouville Equation of Geometrical Optics with Partial Transmissions and Reflections , 2006, SIAM J. Numer. Anal..

[31]  Gregor Tanner,et al.  Discrete flow mapping: transport of phase space densities on triangulated surfaces , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  G. Froyland,et al.  Optimally coherent sets in geophysical flows: a transfer-operator approach to delimiting the stratospheric polar vortex. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[34]  Gregor Tanner,et al.  Solving the stationary Liouville equation via a boundary element method , 2012, J. Comput. Phys..

[35]  Pierre Gaspard,et al.  Chaos, Scattering and Statistical Mechanics , 1998 .

[36]  Robin S. Langley,et al.  A wave intensity technique for the analysis of high frequency vibrations , 1992 .

[37]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[38]  Gregor Tanner,et al.  Dynamical energy analysis—Determining wave energy distributions in vibro-acoustical structures in the high-frequency regime , 2009 .

[39]  Péter Koltai,et al.  Discretization of the Frobenius-Perron Operator Using a Sparse Haar Tensor Basis: The Sparse Ulam Method , 2009, SIAM J. Numer. Anal..

[40]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.

[41]  E. Ott,et al.  Predicting the statistics of wave transport through chaotic cavities by the Random Coupling Model: a review and recent progress , 2013, 1303.6526.

[42]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[43]  J. H. M. ten Thije Boonkkamp,et al.  A Novel Scheme for Liouville’s Equation with a Discontinuous Hamiltonian and Applications to Geometrical Optics , 2016, J. Sci. Comput..