Toward the Emergence of Nanoneurosurgery: Part III-Nanomedicine: Targeted Nanotherapy, Nanosurgery and Progress toward the Realization of Nanoneurosurgery.

[1]  J. Kreuter,et al.  Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[2]  Gabriel A Silva,et al.  Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. , 2007, Surgical neurology.

[3]  R. Müller,et al.  Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[4]  Raoul Kopelman,et al.  Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors , 2006, Clinical Cancer Research.

[5]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part III—Nanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery , 2006, Neurosurgery.

[6]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part II—Nanomedicine: Diagnostics and Imaging at the Nanoscale Level , 2006, Neurosurgery.

[7]  William Shain,et al.  An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. , 2005, Lab on a chip.

[8]  E. Neuwelt,et al.  Imaging, Distribution, and Toxicity of Superparamagnetic Iron Oxide Magnetic Resonance Nanoparticles in the Rat Brain and Intracerebral Tumor , 2005, Neurosurgery.

[9]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part I—Progress in Nanoscience, Nanotechnology, and the Comprehension of Events in the Mesoscale Realm , 2005, Neurosurgery.

[10]  E. Neuwelt,et al.  An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. , 2005, AJNR. American journal of neuroradiology.

[11]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[12]  K. Yarema,et al.  Targeting cancer cells with dendrimers. , 2005, Chemistry & biology.

[13]  Paul R. Lockman,et al.  Nanoparticle Surface Charges Alter Blood–Brain Barrier Integrity and Permeability , 2004, Journal of drug targeting.

[14]  E. Neuwelt,et al.  Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours , 2004, Neuropathology and applied neurobiology.

[15]  K. Geiger,et al.  Chemotherapy of glioblastoma in rats using doxorubicin‐loaded nanoparticles , 2004, International journal of cancer.

[16]  D. Begley,et al.  Direct Evidence That Polysorbate-80-Coated Poly(Butylcyanoacrylate) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles , 2003, Pharmaceutical Research.

[17]  J. Kreuter,et al.  Significant Transport of Doxorubicin into the Brain with Polysorbate 80-Coated Nanoparticles , 1999, Pharmaceutical Research.

[18]  D. A. Kharkevich,et al.  Delivery of Loperamide Across the Blood-Brain Barrier with Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles , 1997, Pharmaceutical Research.

[19]  Alexander V Kabanov,et al.  Nanogels for oligonucleotide delivery to the brain. , 2004, Bioconjugate chemistry.

[20]  Ralph Weissleder,et al.  A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. , 2003, Cancer research.

[21]  F. Calon,et al.  Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. , 2003, Human gene therapy.

[22]  G. Vassal,et al.  Poly(ethylene glycol)-Coated Hexadecylcyanoacrylate Nanospheres Display a Combined Effect for Brain Tumor Targeting , 2002, Journal of Pharmacology and Experimental Therapeutics.

[23]  F. Zanella,et al.  Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. , 2002, Toxicology letters.

[24]  Peter Ramge,et al.  Apolipoprotein-mediated Transport of Nanoparticle-bound Drugs Across the Blood-Brain Barrier , 2002, Journal of drug targeting.

[25]  Ravi Kumar M.N.V. Nano and microparticles as controlled drug delivery devices. , 2000 .

[26]  R Weissleder,et al.  Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. , 2000, Radiology.

[27]  R Weissleder,et al.  Improved delineation of human brain tumors on MR images using a long‐circulating, superparamagnetic iron oxide agent , 1999, Journal of magnetic resonance imaging : JMRI.

[28]  B. Sabel,et al.  Nanoparticle technology for delivery of drugs across the blood-brain barrier. , 1998, Journal of pharmaceutical sciences.

[29]  B. Sabel,et al.  Efficacy of Oral Dalargin-loaded Nanoparticle Delivery across the Blood–Brain Barrier , 1998, Peptides.

[30]  D. A. Kharkevich,et al.  Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. , 1998, Journal of microencapsulation.

[31]  R. Weissleder,et al.  Delivery of virus-sized iron oxide particles to rodent CNS neurons. , 1994, Neurosurgery.