A Hardware and Secure Pseudorandom Generator for Constrained Devices

Hardware security for an Internet of Things or cyber physical system drives the need for ubiquitous cryptography to different sensing infrastructures in these fields. In particular, generating strong cryptographic keys on such resource-constrained device depends on a lightweight and cryptographically secure random number generator. In this research work, we have introduced a new hardware chaos-based pseudorandom number generator, which is mainly based on the deletion of an Hamilton cycle within the <inline-formula><tex-math notation="LaTeX">$N$</tex-math></inline-formula> -cube (or on the vectorial negation), plus one single permutation. We have rigorously proven the chaotic behavior and cryptographically secure property of the whole proposal: the mid-term effects of a slight modification of the seed (proven to be sensitive to the initial conditions) or of the inputted generator cannot be predicted. The proposal has been fully deployed on a FPGA and 65 <inline-formula><tex-math notation="LaTeX">$\text{nm}$</tex-math> </inline-formula> ASIC, it runs completely in parallel while consuming as low resources as possible, and achieving: (a) 11.5 Gb/s for FPGA and 9.4 Gb/s for ASIC random bit throughput, (b) <inline-formula><tex-math notation="LaTeX"> $3.3\,\mu \text{W}$</tex-math></inline-formula> (LF) to <inline-formula><tex-math notation="LaTeX">$7.8 \,\text{mW}$ </tex-math></inline-formula> (UHF) total power consumption with <inline-formula><tex-math notation="LaTeX">$5\%$ </tex-math></inline-formula> leakage power, measured at <inline-formula><tex-math notation="LaTeX">$1.32\,\text{V}$ </tex-math></inline-formula>, and (c) able to successfully pass the statistical tests of NIST and TestU01 (BigCrush).

[1]  Guang Gong,et al.  Efficient Hardware Implementations of the Warbler Pseudorandom Number Generator , 2015, IACR Cryptol. ePrint Arch..

[2]  Lih-Yuan Deng,et al.  Period Extension and Randomness Enhancement Using High-Throughput Reseeding-Mixing PRNG , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[3]  J. Cernák Digital generators of chaos , 1996 .

[4]  Michel Barbeau,et al.  Security Threat Mitigation Trends in Low-Cost RFID Systems , 2009, DPM/SETOP.

[5]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[6]  Claude Castelluccia,et al.  TinyRNG: A Cryptographic Random Number Generator for Wireless Sensors Network Nodes , 2007, 2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops.

[7]  Jacques M. Bahi,et al.  Noise and Chaos Contributions in Fast Random Bit Sequence Generated From Broadband Optoelectronic Entropy Sources , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Wade Trappe,et al.  Low-Energy Security: Limits and Opportunities in the Internet of Things , 2015, IEEE Security & Privacy.

[9]  Christophe Guyeux,et al.  Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses , 2018, Comput. Sci. Rev..

[10]  Jacques M. Bahi,et al.  Pseudorandom number generators with balanced Gray codes , 2014, 2014 11th International Conference on Security and Cryptography (SECRYPT).

[11]  P. Dabal,et al.  FPGA implementation of chaotic pseudo-random bit generators , 2012, Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2012.

[12]  Christophe Guyeux,et al.  CIPRNG: A VLSI Family of Chaotic Iterations Post-Processings for $\mathbb {F}_{2}$ -Linear Pseudorandom Number Generation Based on Zynq MPSoC , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Tsin-Yuan Chang,et al.  A chaos-based pseudo random number generator using timing-based reseeding method , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[14]  Christophe Guyeux,et al.  Random Walk in a N-Cube Without Hamiltonian Cycle to Chaotic Pseudorandom Number Generation: Theoretical and Practical Considerations , 2017, Int. J. Bifurc. Chaos.

[15]  Pawel Dabal,et al.  A study on fast pipelined pseudo-random number generator based on chaotic logistic map , 2014, 17th International Symposium on Design and Diagnostics of Electronic Circuits & Systems.

[16]  Jacques M. Bahi,et al.  Efficient and cryptographically secure generation of chaotic pseudorandom numbers on GPU , 2015, The Journal of Supercomputing.

[17]  Jordi Herrera-Joancomartí,et al.  J3Gen: A PRNG for Low-Cost Passive RFID , 2013, Sensors.

[18]  Melissa E. O'Neill PCG : A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation , 2014 .

[19]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[20]  Apostol Vassilev,et al.  Entropy as a Service: Unlocking Cryptography's Full Potential , 2016, Computer.

[21]  Jianhua Chen,et al.  Certificateless Searchable Public Key Encryption Scheme for Industrial Internet of Things , 2018, IEEE Transactions on Industrial Informatics.

[22]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[23]  Jacques M. Bahi,et al.  A Topological Study of Chaotic Iterations Application to Hash Functions , 2016, Computational Intelligence for Privacy and Security.

[24]  Naixue Xiong,et al.  A general hybrid model for chaos robust synchronization and degradation reduction , 2015, Inf. Sci..

[25]  Guang Gong,et al.  Hardware implementations of the WG-5 cipher for passive RFID tags , 2013, 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).

[26]  Mohammed Affan Zidan,et al.  Random number generation based on digital differential chaos , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[27]  Mikael Gidlund,et al.  Guest Editorial Industrial Wireless Networks: Applications, Challenges, and Future Directions , 2016, IEEE Trans. Ind. Informatics.

[28]  Ray C. C. Cheung,et al.  A Bias-Bounded Digital True Random Number Generator Architecture , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Theodore Tryfonas,et al.  The Internet of Things: a security point of view , 2016, Internet Res..

[30]  Guang Gong,et al.  Design space exploration of the lightweight stream cipher WG-8 for FPGAs and ASICs , 2013, WESS '13.

[31]  Jacques M. Bahi,et al.  Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  A Pande,et al.  Design and hardware implementation of a chaotic encryption scheme for real-time embedded systems , 2010, 2010 International Conference on Signal Processing and Communications (SPCOM).

[33]  Johannes Wolkerstorfer,et al.  Hardware Implementation of Symmetric Algorithms for RFID Security , 2008 .

[34]  Christophe Guyeux,et al.  An improved watermarking algorithm for Internet applications , 2010 .

[35]  Zhengquan Xu,et al.  An Improved Chaos-Based Stream Cipher Algorithm and its VLSI Implementation , 2008, 2008 Fourth International Conference on Networked Computing and Advanced Information Management.

[36]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[37]  Juan E. Tapiador,et al.  LAMED - A PRNG for EPC Class-1 Generation-2 RFID specification , 2009, Comput. Stand. Interfaces.

[38]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[39]  C. Thibeault,et al.  FPGA implementation and evaluation of discrete-time chaotic generators circuits , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[40]  Jean-François Couchot,et al.  Canonical Form of Gray Codes in N-cubes , 2017, AUTOMATA.

[41]  Himanshu Kaul,et al.  2.4 Gbps, 7 mW All-Digital PVT-Variation Tolerant True Random Number Generator for 45 nm CMOS High-Performance Microprocessors , 2012, IEEE Journal of Solid-State Circuits.

[42]  Juan E. Tapiador,et al.  Efficient ASIC Implementation and Analysis of Two EPC-C1G2 RFID Authentication Protocols , 2013, IEEE Sensors Journal.

[43]  Pawel Dabal,et al.  A chaos-based pseudo-random bit generator implemented in FPGA device , 2011, 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems.

[44]  R. Balasubramanian,et al.  Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers , 2016, LightSec.

[45]  Christophe Guyeux,et al.  FPGA Implementation of F2-Linear Pseudorandom Number Generators based on Zynq MPSoC: A Chaotic Iterations Post Processing Case Study , 2016, SECRYPT.

[46]  Mohammed Affan Zidan,et al.  The effect of numerical techniques on differential equation based chaotic generators , 2011, ICM 2011 Proceeding.

[47]  Lingfeng Liu,et al.  Pseudorandom sequence generator based on the Chen chaotic system , 2013, Comput. Phys. Commun..

[48]  Deva Seetharam,et al.  An efficient pseudo random number generator for low-power sensor networks [wireless networks] , 2004, 29th Annual IEEE International Conference on Local Computer Networks.

[49]  Fausto Montoya Vitini,et al.  A Review of Cryptographically Secure PRNGs in Constrained Devices for the IoT , 2017, SOCO-CISIS-ICEUTE.

[50]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[51]  Guang Gong,et al.  Design and Implementation of Warbler Family of Lightweight Pseudorandom Number Generators for Smart Devices , 2016, ACM Trans. Embed. Comput. Syst..

[52]  Joaquín García,et al.  Analysis and Improvement of a Pseudorandom Number Generator for EPC Gen2 Tags , 2010, Financial Cryptography Workshops.

[53]  Gongpu Wang,et al.  Intercept Behavior Analysis of Industrial Wireless Sensor Networks in the Presence of Eavesdropping Attack , 2015, IEEE Transactions on Industrial Informatics.

[54]  Jacques M. Bahi,et al.  FPGA acceleration of a pseudorandom number generator based on chaotic iterations , 2014, J. Inf. Secur. Appl..

[55]  Timothy A. Hall,et al.  The Importance of Entropy to Information Security , 2014, Computer.

[56]  Jacques M. Bahi,et al.  FPGA Design for Pseudorandom Number Generator Based on Chaotic Iteration used in Information Hiding Application , 2013, ArXiv.

[57]  Enrique San Millán,et al.  Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments , 2009, SEWCN.