From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals

Department of Physics and Division of Engineering and Applied Sciences,Harvard University, Cambridge, Massachusetts 02138(Dated: February 2, 2008)We present a multiscale modeling approach that concurrently couples quantum mechanical, classi-cal atomistic and continuum mechanics simulations in a unified fashion for metals. This approach isparticular useful for systems where chemical interactions in a small region can affect the macroscopicproperties of a material. We discuss how the coupling across different scales can be accomplishedefficiently, and we apply the method to multiscale simulations of an edge dislocation in aluminumin the absence and presence of H impurities.

[1]  Xiang-Yang Liu,et al.  Embedded-atom-method tantalum potential developed by the force-matching method , 2003 .

[2]  E Weinan,et al.  Multiscale simulations in simple metals: A density-functional-based methodology , 2004, cond-mat/0404414.

[3]  Rajiv K. Kalia,et al.  Coupling Length Scales for Multiscale Atomistics-Continuum Simulations , 2001 .

[4]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[5]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[6]  A. Nakano,et al.  Coupling length scales for multiscale atomistics-continuum simulations: atomistically induced stress distributions in Si/Si3N4 nanopixels. , 2001, Physical review letters.

[7]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[8]  Jiali Gao,et al.  Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials , 2007 .

[9]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[10]  Michael J. Mills,et al.  A study of the structure of Lomer and 60° dislocations in aluminium using high-resolution transmission electron microscopy , 1989 .

[11]  E. Kaxiras,et al.  Hydrogen-enhanced local plasticity in aluminum: an ab initio study. , 2001, Physical review letters.

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[14]  Efthimios Kaxiras,et al.  Hydrogen-Enhanced Local Plasticity in Aluminum , 2001 .