Analytical and Numerical Methods in Acoustics

Numerous analytical and numerical methods are displayed in this book together with the solutions for special tasks. This chapter contains analytical and numerical methods to be applied in acoustics, going beyond the scope of single examples. The description of a method unavoidably needs more textual explanations than the representation of just the resulting formulas. Section O.1 describes a procedure for optimisation of the parameters of a sound absorber; the Section O.2 outlines a method for the evaluation of many concatenated transfer matrices. The Section O.3 will present five standard problems of numerical acoustics which frequently occur in practical applications. In Sects. O.4–O.6 three important methods for the numerical solution of these problems will be described. The source simulation technique and the boundary element method are mainly used for exterior problems such as the radiation or the scattering problem (see Sects. O.4 and O.5). The finite element method is especially suited for computing sound fields in interior spaces (see Sect. O.6). The fluid-structure interaction problem can be treated by a combined finite element and boundary element approach, for example with the method of Sect. O.6. The transmission problem can be formulated in terms of boundary integral equations (see Sect. O.5). Analytical field solutions for benchmark models are given in Sects. O.7, O.8.

[1]  R. Kleinman,et al.  Boundary integral equations for the Helmholtz equation: The third boundary value problem , 1982 .

[2]  J. B. Fahnline,et al.  A numerical solution for the general radiation problem based on the combined methods of superposition and singular‐value decomposition , 1991 .

[3]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[4]  G. C. Everstine,et al.  Coupled finite element/boundary element approach for fluid–structure interaction , 1990 .

[5]  L. Couchman,et al.  A sparse integral equation method for acoustic scattering , 1995 .

[6]  L. G. Copley,et al.  Fundamental Results Concerning Integral Representations in Acoustic Radiation , 1968 .

[7]  E. Skudrzyk The foundations of acoustics , 1971 .

[8]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  V. D. Kupradze,et al.  Randwertaufgaben der Schwingungstheorie und Integralgleichungen , 1956 .

[10]  G. Gladwell,et al.  On energy and complementary energy formulations of acoustic and structural vibration problems , 1966 .

[11]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .

[12]  Kenneth A. Cunefare,et al.  A boundary element method for acoustic radiation valid for all wavenumbers , 1989 .

[13]  G. F. Roach,et al.  The null field method and modified Green functions , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  R. Kress,et al.  On the condition number of boundary integral operators for the exterior Dirichlet problem for the Helmholtz equation , 1983 .

[15]  Christian Soize,et al.  Reduced models for structures in the medium-frequency range coupled with internal acoustic cavities , 1999 .

[16]  An Iterative Solution for Magnetic Field Integral Equation , 2002 .

[17]  R. Jeans,et al.  The wave superposition method as a robust technique for computing acoustic fields , 1992 .

[18]  M. Ochmann The full-field equations for acoustic radiation and scattering , 1999 .

[19]  D. S. Jones,et al.  INTEGRAL EQUATIONS FOR THE EXTERIOR ACOUSTIC PROBLEM , 1974 .

[20]  R. Kleinman,et al.  On Neumann's method for the exterior neumann problem for the Helmholtz equation , 1977 .

[21]  A generalized internal source density method for the forward and backward projection of harmonic pressure fields from complex bodies , 1997 .

[22]  A. Seybert,et al.  Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space , 1988 .

[23]  John T. Hunt,et al.  Finite element approach to acoustic radiation from elastic structures , 1974 .

[24]  T. M. Tomilina,et al.  Calculation of radiation from finite elastic bodies by the method of auxiliary sources , 1990 .

[25]  S. K. Jha,et al.  A simplified finite element method for studying acoustic characteristics inside a car cavity , 1979 .

[26]  P. Raju,et al.  Application of the method of moments to acoustic scattering from multiple bodies of arbitrary shape , 1989 .

[27]  A. Craggs,et al.  Sound transmission between enclosures-A study using plate and acoustic finite element , 1976 .

[28]  A. Seybert,et al.  An advanced computational method for radiation and scattering of acoustic waves in three dimensions , 1985 .

[29]  J. Lea,et al.  A finite element method for determining the acoustic modes of irregular shaped cavities , 1976 .

[30]  A. Kirsch,et al.  Convergence analysis of a coupled finite element and spectral method in acoustic scattering , 1990 .

[31]  Paul A. Martin,et al.  ON THE NULL-FIELD EQUATIONS FOR THE EXTERIOR PROBLEMS OF ACOUSTICS , 1980 .

[32]  Robert F. Millar On the Completeness of Sets of Solutions to the Helmholtz Equation , 1983 .

[33]  Roger H. Hackman,et al.  The transition matrix for acoustic and elastic wave scattering in prolate spheroidal coordinates , 1984 .

[34]  Paul A. Martin,et al.  Acoustic scattering and radiation problems, and the null-field method , 1982 .

[35]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[36]  A. Craggs,et al.  The use of simple three-dimensional acoustic finite elements for determining the natural modes and frequencies of complex shaped enclosures , 1972 .

[37]  A. F. Seybert,et al.  Application of the Boundary Element Method to Acoustic Cavity Response and Muffler Analysis , 1987 .

[38]  A. F. Seybert,et al.  The solution of coupled interior/exterior acoustic problems using the boundary element method , 1990 .

[39]  Gary H. Koopmann,et al.  Method for computing the sound power of machines based on the Helmholtz integral , 1982 .

[40]  Christian Soize,et al.  Reduced models in the medium-frequency range for general external structural-acoustic systems , 1998, The Journal of the Acoustical Society of America.

[42]  Eva Part-Enander,et al.  The Matlab Handbook , 1996 .

[43]  J. B. Fahnline,et al.  A method for computing acoustic fields based on the principle of wave superposition , 1989 .

[44]  P. Waterman,et al.  New Formulation of Acoustic Scattering , 1969 .

[45]  R. Kleinman,et al.  Iterative solutions of boundary integral equations in acoustics , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  D. Schweikert,et al.  Sound Radiation from an Arbitrary Body , 1963 .

[47]  G. F. Roach,et al.  On modified Green functions in exterior problems for the Helmholtz equation , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  Hans Rudolf Schwarz,et al.  Methode der finiten Elemente , 1984 .

[49]  A. F. Seybert,et al.  Modified Helmholtz integral equation for bodies sitting on an infinite plane , 1989 .

[50]  H. A. Schenck Improved Integral Formulation for Acoustic Radiation Problems , 1968 .

[51]  Donald J. Nefske,et al.  Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice , 1982 .

[52]  Reinhold Ludwig,et al.  Finite-Element Formulation of Acoustic Scattering Phenomena with Absorbing Boundary-Condition in the Frequency-Domain , 1993 .

[53]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[54]  Yehuda Leviatan,et al.  Analysis of scattering from structures containing a variety of length scales using a source‐model technique , 1993 .

[55]  J. N. Decarpigny,et al.  Combined integral equation formulation and null‐field method for the exterior acoustic problem , 1988 .

[56]  V. Smirnov Lehrgang der höheren mathematik , 1963 .

[57]  S. Elliott,et al.  AN EQUIVALENT SOURCE TECHNIQUE FOR CALCULATING THE SOUND FIELD INSIDE AN ENCLOSURE CONTAINING SCATTERING OBJECTS , 1998 .

[58]  M. Heckl,et al.  Taschenbuch der Technischen Akustik , 2020, Springer Reference Technik.

[59]  R. R. Smith,et al.  Finite element analysis of acoustically radiating structures with applications to sonar transducers , 1973 .

[60]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[61]  K. Ishihara,et al.  The analysis of the acoustic field in irregularly shaped rooms by the finite element method , 1973 .

[62]  J. R. Higgins Completeness and basis properties of sets of special functions: Bibliography , 1977 .

[63]  Miguel C. Junger,et al.  Sound, Structures, and Their Interaction , 1972 .

[64]  Mohamed Masmoudi,et al.  Numerical solution for exterior problems , 1987 .

[65]  Christian Soize,et al.  Reduced models in the medium frequency range for general dissipative structural-dynamics systems , 1998, European Journal of Mechanics - A/Solids.

[66]  S. Makarov,et al.  An iterative solver of the Helmholtz integral equation for high-frequency acoustic scattering , 1998 .

[67]  Sean F. Wu,et al.  Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method , 1998 .

[68]  Graeme Fairweather,et al.  The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems , 1998 .

[69]  F. J. Rizzo,et al.  A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions , 1986 .

[70]  W. Schmeidler,et al.  W. I. Smirnow, Lehrgang der Höheren Mathematik, Teil V. XIII + 569 S. m. 3 Abb. Berlin 1962. VEB Deutscher Verlag der Wissenschaften. Preis geb. DM 36,— , 1963 .

[71]  Yiu W. Lam,et al.  THE PREDICTION OF THE SOUND FIELD DUE TO AN ARBITRARY VIBRATING BODY IN A RECTANGULAR ENCLOSURE , 1990 .

[72]  R. E. Kleinman,et al.  Boundary Integral Equations for the Three-Dimensional Helmholtz Equation , 1974 .

[73]  J. Hwang,et al.  A retracted boundary integral equation for exterior acoustic problem with unique solution for all wave numbers , 1991 .

[74]  R. Kress,et al.  The unique solvability of the null field equations of acoustics , 1983 .

[75]  Grégoire Winckelmans,et al.  A multiple multipole expansion approach for predicting the sound power of vibrating structures , 1999 .

[76]  Rainer Kress,et al.  On the simulation source technique for exterior problems in acoustics , 1986 .

[77]  Convergence of Iterative Solutions to Integral Equations for Sound Radiation , 1968 .