Accurate upper and lower error bounds by solving flux-free local problems in “stars”
暂无分享,去创建一个
Pedro Díez | Antonio Huerta | Núria Parés | A. Huerta | P. Díez | N. Parés
[1] J. Bonet,et al. The efficient computation of bounds for functionals of finite element solutions in large strain elasticity , 2002 .
[2] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[3] Anthony T. Patera,et al. A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .
[4] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[5] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[6] Pedro Díez,et al. Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .
[7] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[8] Pedro Díez,et al. Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates , 2003 .
[9] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[10] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[11] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[12] Fabio Nobile,et al. Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .