Room-Temperature, Solution-Processed MoOx Thin Film as a Hole Extraction Layer to Substitute PEDOT/PSS in Polymer Solar Cells

Room-temperature, solution-processed molybdenum oxide (MoOx) as a hole extraction layer to substitute PEDOT/PSS in polymer solar cells was demonstrated. The thin film of MoOx shows a smoother surface, better transparency, and high electrical conductivity than that of PEDOT/PSS thin layer and, thus, leading enhanced efficiency of PSCs than those using PEDOT/PSS anode buffer layer. These results demonstrated that the utilization of room-temperature, solution-processed MoOx thin film as a hole extraction layer in polymer solar cells blaze a trail to achieve high performance devices.

[1]  S. K. Deb,et al.  Optical Properties and Color‐Center Formation in Thin Films of Molybdenum Trioxide , 1966 .

[2]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[3]  G. Crawford Flexible Flat Panel Displays: Crawford/Flexible Flat Panel Displays , 2005 .

[4]  A. Heeger,et al.  A Solution‐Processed MoOx Anode Interlayer for Use within Organic Photovoltaic Devices , 2012 .

[5]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[6]  Christoph J. Brabec,et al.  High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension , 2011 .

[7]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[8]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[9]  Fei Huang,et al.  Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte , 2012 .

[10]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[11]  Junbiao Peng,et al.  Polymer Solar Cells with a Low‐Temperature‐Annealed Sol–Gel‐Derived MoOx Film as a Hole Extraction Layer , 2012 .

[12]  Jianhui Hou,et al.  Room-Temperature Solution-Processed Molybdenum Oxide as a Hole Transport Layer with Ag Nanoparticles for Highly Efficient Inverted Organic Solar Cells , 2013 .

[13]  Chun-Sing Lee,et al.  Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer , 2006 .

[14]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[15]  R. Vaia,et al.  Low‐Temperature Solution‐Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices , 2012 .

[16]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[17]  Stephen Z. D. Cheng,et al.  Fine-Tuning of Fluorinated Thieno[3,4-b]thiophene Copolymer for Efficient Polymer Solar Cells , 2013 .

[18]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.