Estimating viral infection parameters using Markov Chain Monte Carlo simulations

Given a mathematical model quantifying the viral infection of pandemic influenza H1N1pdm09-H275 wild type (WT) and H1N1pdm09-H275Y mutant (MUT) strains, we describe a simple method of estimating the model's constant parameters using Monte Carlo methods. Monte Carlo parameter estimation methods present certain advantages over the bootstrapping methods previously used in such studies: the result comprises actual parameter distributions (posteriors) that can be used to compare different viral strains; the recovered parameter distributions offer an exact method to compute credible intervals (similar to the frequentist 95% parametric confidence intervals (CI)), that, in turn, using a suitable analysis statistic, will be narrower than the ones obtained from bootstrapping; given an appropriate computational parallelization, Monte Carlo methods are also faster and less computationally intensive than bootstrapping. We fit Gaussian distributions to the parameter posterior distributions and use a two-sided Kolmogorov-Smirnoff test to compare the two strains from a parametric point of view; our example result shows that the two strains are 94% different. Furthermore, based on the obtained parameter values, we estimate the reproductive number R0 for each strain and show that the infectivity of the mutant strain is larger than the wild type strain.

[1]  Luca Konig Introduction To Numerical Ordinary And Partial Differential Equations Using Matlab , 2016 .

[2]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[3]  A. Vecchio,et al.  Analysis of the first IPTA Mock Data Challenge by the EPTA timing data analysis working group , 2013, 1301.6673.

[4]  Adam Amara,et al.  CosmoHammer: Cosmological parameter estimation with the MCMC Hammer , 2012, Astron. Comput..

[5]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[6]  Guy Boivin,et al.  The H275Y Neuraminidase Mutation of the Pandemic A/H1N1 Influenza Virus Lengthens the Eclipse Phase and Reduces Viral Output of Infected Cells, Potentially Compromising Fitness in Ferrets , 2012, Journal of Virology.

[7]  David A. Cox Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts , 2012 .

[8]  Lynnette Brammer,et al.  Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. , 2009, JAMA.

[9]  A. Perelson,et al.  Kinetics of Influenza A Virus Infection in Humans , 2006, Journal of Virology.

[10]  G. Boivin,et al.  A Reverse Genetics Study of Resistance to Neuraminidase Inhibitors in An Influenza A/H1N1 Virus , 2003, Antiviral therapy.

[11]  S. Wain-Hobson Virus Dynamics: Mathematical Principles of Immunology and Virology , 2001, Nature Medicine.

[12]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[13]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[14]  Update : Drug Susceptibility of Swine-Origin Influenza A ( H 1 N 1 ) Viruses , 2022 .