Radiation statistics of a degenerate parametric oscillator at threshold

As a function of the driving strength, a degenerate parametric oscillator exhibits an instability at which spontaneous oscillations occur. Close to threshold, both the nonlinearity as well as fluctuations are vital to the accurate description of the dynamics. We study the statistics of the adiation that is emitted by the degenerate parametric oscillator at threshold. For a weak nonlinearity, we can employ a quasiclassical description. We identify a universal Liouvillian that captures the relevant long-time dynamics for large photon-numbers. We find that the cumulants obey a universal power-law scaling as a function of the nonlinearity. The Fano factor shows a maximum close, but not coinciding, with the threshold. Moreover, we predict a certain ratio of the first three cumulants to be independent of the microscopic details of the system and connect the results to experimental platforms.

[1]  C. Flindt,et al.  Nonequilibrium phase transition in a single-electron micromaser , 2022, 2201.06131.

[2]  D. Estève,et al.  Emission of Photon Multiplets by a dc-Biased Superconducting Circuit , 2021, Physical Review X.

[3]  G. Steele,et al.  Level attraction and idler resonance in a strongly driven Josephson cavity , 2021, Physical Review Research.

[4]  F. Hassler,et al.  Universality of photon counting below a local bifurcation threshold , 2021 .

[5]  D. Estève,et al.  Generating Two Continuous Entangled Microwave Beams Using a dc-Biased Josephson Junction , 2020, Physical Review X.

[6]  B. Reulet,et al.  Photocount statistics of the Josephson parametric amplifier , 2020, Physical Review Research.

[7]  V. Shumeiko,et al.  Parametric effects in circuit quantum electrodynamics , 2019, Low Temperature Physics.

[8]  F. Hassler,et al.  Statistics of radiation due to nondegenerate Josephson parametric down-conversion , 2019, Physical Review B.

[9]  A. Gorshkov,et al.  Nonequilibrium Fixed Points of Coupled Ising Models , 2019, Physical review. X.

[10]  Jonathan Keeling,et al.  Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa , 2018, Advanced Quantum Technologies.

[11]  M. Hofheinz,et al.  Bright On-Demand Source of Antibunched Microwave Photons Based on Inelastic Cooper Pair Tunneling , 2018, Physical Review X.

[12]  I. Carusotto,et al.  Dynamical Critical Exponents in Driven-Dissipative Quantum Systems. , 2017, Physical review letters.

[13]  M. Plenio,et al.  Dissipative phase transition in the open quantum Rabi model , 2017, 1708.08175.

[14]  M. Irfan,et al.  Demonstration of an ac Josephson junction laser , 2017, Science.

[15]  H. Tureci,et al.  Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice , 2016, 1611.00697.

[16]  D. Nagy,et al.  Critical exponent of quantum phase transitions driven by colored noise , 2016, 1610.01124.

[17]  S. Diehl,et al.  Quantum dynamical field theory for nonequilibrium phase transitions in driven open systems , 2016, 1606.00452.

[18]  C. Adams,et al.  Driven-dissipative many-body systems with mixed power-law interactions: Bistabilities and temperature-driven nonequilibrium phase transitions , 2015, 1512.02123.

[19]  G. Johansson,et al.  Correlated Cooper pair transport and microwave photon emission in the dynamical Coulomb blockade , 2015, 1511.06280.

[20]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[21]  I. Carusotto,et al.  Non-equilibrium Berezinskii-Kosterlitz-Thouless Transition in a Driven Open Quantum System , 2014, 1412.7361.

[22]  M. Marthaler,et al.  Electroluminescence and multiphoton effects in a resonator driven by a tunnel junction , 2014, 1407.5460.

[23]  A. Houck,et al.  Observation of a Dissipation-Induced Classical to Quantum Transition , 2013, 1312.2963.

[24]  J. Ankerhold,et al.  From Coulomb-blockade to nonlinear quantum dynamics in a superconducting circuit with a resonator. , 2013, Physical review letters.

[25]  F. Brennecke,et al.  Real-time observation of fluctuations at the driven-dissipative Dicke phase transition , 2013, Proceedings of the National Academy of Sciences.

[26]  Waltraut Wustmann,et al.  Parametric resonance in tunable superconducting cavities , 2013, 1302.3484.

[27]  S. Diehl,et al.  Dynamical critical phenomena in driven-dissipative systems. , 2013, Physical review letters.

[28]  M. Lukin,et al.  Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities , 2012, 1210.3623.

[29]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[30]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[31]  Y. Nazarov,et al.  Statistics of radiation at Josephson parametric resonance , 2011, 1112.4159.

[32]  A. Kamenev Field Theory of Non-Equilibrium Systems , 2011 .

[33]  P. Bertet,et al.  Bright side of the Coulomb blockade. , 2011, Physical review letters.

[34]  T. Prosen,et al.  Quantization over boson operator spaces , 2010, 1007.2921.

[35]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[36]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[37]  K. Kheruntsyan,et al.  Exact quantum theory of a parametrically driven dissipative anharmonic oscillator , 1996 .

[38]  H. Kleinert,et al.  Quantum Langevin equation from forward-backward path integral , 1995, quant-ph/9503004.

[39]  M. S. Singh,et al.  Photon-counting statistics of the degenerate optical parametric oscillator. , 1989, Physical review. A, General physics.

[40]  A. Schmid On a quasiclassical Langevin equation , 1982 .

[41]  Bertrand I. Halperin,et al.  Theory of dynamic critical phenomena , 1977, Physics Today.

[42]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[43]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[44]  H. Carmichael Statistical Methods in Quantum Optics 2 , 2008 .

[45]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[46]  P. McSharry,et al.  Nonlinear dynamics and chaos , 2002, Growing Explanations.

[47]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[48]  H. Haken Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems , 1975 .