A hybrid intelligent system for fault detection and sensor fusion

In this paper, an efficient new hybrid approach for multiple sensor fusion and fault detection is proposed, addressing the problem with multiple faults, which is based on conventional fuzzy soft clustering and artificial immune systems. For this new approach, requires no prior knowledge or information about the sensors, or the system behavior, and no learning processes are required. The proposed hybrid approach consists of two main phases. In the first phase a single fuser for the input sensor signals is generated using the fuzzy clustering c-means algorithm. The fused output is based on the cluster centers that contain the maximum number of the input elements. In the second phase a fault detector was generated base on the artificial immune system AIS.

[1]  Kazuhiko Takahashi,et al.  An immune feedback mechanism based adaptive learning of neural network controller , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[2]  Data fusion with a faulty sensor , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[3]  M.F.R. Lee,et al.  Implementation of sensor selection and fusion using fuzzy logic , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[4]  Suhada Jayasuriya,et al.  Nonlinear Averaging of Multi-Sensor Data , 2003 .

[5]  Yuri Vershinin,et al.  A data fusion algorithm for multisensor systems , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[6]  M. Araujo,et al.  Fault detection system in gas lift well based on artificial immune system , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[7]  Fatos Xhafa,et al.  Genetic algorithm based schedulers for grid computing systems , 2007 .

[8]  Yongji Wang,et al.  Localization of the autonomous mobile robot based on sensor fusion , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[9]  H. F. Durrant-Whyte Elements of sensor fusion , 1991 .

[10]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[11]  Systems Man Ieee Joint 9th Ifsa World Congress and 20th NAFIPS International Conference 2001 , 2001 .

[12]  Bin Wang,et al.  A distributed immune algorithm for learning experience in complex industrial process control , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[13]  Tughrul Arslan,et al.  Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware , 2003 .

[14]  B. Jiang,et al.  NONLINEAR MODEL DECOMPOSITION FOR ROBUST FAULT DETECTION AND ISOLATION USING ALGEBRAIC TOOLS , 2006 .

[15]  Ren C. Luo,et al.  A tutorial on multisensor integration and fusion , 1990, [Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society.

[16]  Hao Xu,et al.  NEURAL NETWORKS BASED SYSTEM IDENTIFICATION TECHNIQUES FOR MODEL BASED FAULT DETECTION OF NONLINEAR SYSTEMS , 2007 .

[17]  Ajay Mahajan,et al.  Multisensor integration and fusion model that uses a fuzzy inference system , 2001 .

[18]  Anita M. Flynn,et al.  Mobile robots: inspiration to implementation , 1993 .

[19]  Jonathan Timmis,et al.  Artificial immune systems as a novel soft computing paradigm , 2003, Soft Comput..

[20]  David G. Stork,et al.  Pattern Classification , 1973 .

[21]  B. Tibken,et al.  Low level sensor fusion for autonomous mobile robot navigation , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).

[22]  W. T. Tucker,et al.  Convergence theory for fuzzy c-means: Counterexamples and repairs , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[24]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[25]  Andrew M. Tyrrell,et al.  Robot error detection using an artificial immune system , 2003, NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings..

[26]  K. K. Kumar,et al.  Immunized adaptive critics for level 2 intelligent control , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[27]  Axel Steinhage,et al.  Nonlinear attractor dynamics: a new approach to sensor fusion , 1999, Optics East.

[28]  Zhou Ji,et al.  Artificial immune system (AIS) research in the last five years , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[29]  Kazuhiko Takahashi,et al.  A self-tuning immune feedback controller for controlling mechanical systems , 1997, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[30]  Moshe Kam,et al.  Sensor Fusion for Mobile Robot Navigation , 1997, Proc. IEEE.

[31]  Dong Hwa Kim Tuning of a PID controller using an artificial immune network model and local fuzzy set , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[32]  Victor A. Skormin,et al.  Pattern recognition by immunocomputing , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[33]  Guang-Da Hu,et al.  A novel control algorithm based on immune feedback principle , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[34]  Yong Ping Xu,et al.  Theoretical study on a new multi-sensor system , 2001, SIcon/01. Sensors for Industry Conference. Proceedings of the First ISA/IEEE. Sensors for Industry Conference (Cat. No.01EX459).

[35]  Mohamed Abdelrahman,et al.  Integration of multiple sensor fusion in controller design , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[36]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .

[37]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[38]  N. Mort,et al.  Fuzzy-model-based multisensor data fusion system , 2001, SPIE Defense + Commercial Sensing.

[39]  Yoram Koren,et al.  Obstacle avoidance with ultrasonic sensors , 1988, IEEE J. Robotics Autom..

[40]  E. Soleit,et al.  Noise immune speech recognition system , 1999, Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249).

[41]  Claudia-Adina Dragos,et al.  Stable and optimal fuzzy control of a laboratory Antilock Braking System , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[42]  Alan S. Perelson,et al.  Self-nonself discrimination in a computer , 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy.

[43]  Marios M. Polycarpou,et al.  On the use of on-line approximators for sensor fault diagnosis , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[44]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[45]  Zou Yi,et al.  Multi-ultrasonic sensor fusion for mobile robots , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[46]  Lianying Zhou,et al.  Research on computer network security based on pattern recognition , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[47]  Ren C. Luo,et al.  Multisensor fusion and integration: approaches, applications, and future research directions , 2002 .

[48]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[49]  John T. Wen,et al.  Mobile robot navigation using sensor fusion , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[50]  Thomas Parisini,et al.  INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL , 2009 .

[51]  Thomas A. Runkler,et al.  Model based sensor fusion with fuzzy clustering , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[52]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[53]  P. J. Escamilla-Ambrosio,et al.  A hybrid Kalman filter-fuzzy logic architecture for multisensor data fusion , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[54]  Zehui Mao,et al.  H/sub /spl infin// fault detection filter design for networked control systems modelled by discrete Markovian jump systems , 2007 .