Field demonstration of distributed quantum sensing without post-selection

We demonstrate distributed quantum sensing in field and show the unconditional violation (without post-selection) of shot-noise limit up to 0.916 dB with the averaged heralding efficiency of 73.88% for the field distance of 240 m.

[1]  Manuel Gessner,et al.  Sensitivity Bounds for Multiparameter Quantum Metrology. , 2018, Physical review letters.

[2]  Li-Yu Daisy Liu,et al.  Distributed quantum phase estimation with entangled photons , 2021, 2102.11679.

[3]  Howard M. Wiseman,et al.  π-Corrected Heisenberg Limit. , 2019, Physical review letters.

[4]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[5]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[6]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[7]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Yang Liu,et al.  Test of Local Realism into the Past without Detection and Locality Loopholes. , 2018, Physical review letters.

[10]  K J Resch,et al.  Time-reversal and super-resolving phase measurements. , 2007, Physical review letters.

[11]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[12]  G. Brida,et al.  Experimental realization of sub-shot-noise quantum imaging , 2010 .

[13]  Jonathan P. Dowling,et al.  Creation of large-photon-number path entanglement conditioned on photodetection , 2001, quant-ph/0112002.

[14]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[15]  Paul A Knott,et al.  Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.

[16]  Carlos A. Pérez-Delgado,et al.  Fundamental limits of classical and quantum imaging. , 2012, Physical review letters.

[17]  Zachary Eldredge,et al.  Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2018, Physical review letters.

[18]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[19]  Fabio Sciarrino,et al.  Photonic Quantum Metrology , 2020 .

[20]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[21]  P. Humphreys,et al.  Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. , 2017, Physical review letters.

[22]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[23]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[24]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[25]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[26]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[27]  Guang-Can Guo,et al.  Control-Enhanced Sequential Scheme for General Quantum Parameter Estimation at the Heisenberg Limit. , 2019, Physical review letters.

[28]  Matthias Christandl,et al.  Distributed quantum sensing in a continuous-variable entangled network , 2019, Nature Physics.

[29]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[30]  Yi Xia,et al.  Demonstration of a Reconfigurable Entangled Radio-Frequency Photonic Sensor Network. , 2020, Physical review letters.

[31]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[32]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[33]  Geoff J Pryde,et al.  Experimental optical phase measurement approaching the exact Heisenberg limit , 2017, Nature Communications.

[34]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.