Quantum experiments and graphs II: Quantum interference, computation, and state generation

Significance Graph theory can be used to model and explain different phenomena from physics. In this paper, we show that one can interpret quantum experiments composed of linear optics and probabilistic sources with graph theory. The important understanding is that complex weights in the graph naturally describe the quantum interference. That point of view leads to several results: We uncover a yet unexplored type of multiphoton quantum interference. It can be used to solve questions that are intractable on a classical computer. Also, the connection points toward a general restriction on creating certain classes of quantum states. In general, it gives another perspective on a mature photonic technology and will be significant for future designs of such experiments. We present an approach to describe state-of-the-art photonic quantum experiments using graph theory. There, the quantum states are given by the coherent superpositions of perfect matchings. The crucial observation is that introducing complex weights in graphs naturally leads to quantum interference. This viewpoint immediately leads to many interesting results, some of which we present here. First, we identify an experimental unexplored multiphoton interference phenomenon. Second, we find that computing the results of such experiments is #P-hard, which means it is a classically intractable problem dealing with the computation of a matrix function Permanent and its generalization Hafnian. Third, we explain how a recent no-go result applies generally to linear optical quantum experiments, thus revealing important insights into quantum state generation with current photonic technology. Fourth, we show how to describe quantum protocols such as entanglement swapping in a graphical way. The uncovered bridge between quantum experiments and graph theory offers another perspective on a widely used technology and immediately raises many follow-up questions.

[1]  Timothy C. Ralph,et al.  Error tolerance of the boson-sampling model for linear optics quantum computing , 2011, 1111.2426.

[2]  Alexander Barvinok,et al.  Approximating permanents and hafnians , 2016, 1601.07518.

[3]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[4]  Andrew Forbes,et al.  Simultaneous entanglement swapping of multiple orbital angular momentum states of light , 2016, Nature Communications.

[5]  M. Lahiri Many-particle interferometry and entanglement by path identity , 2018, Physical Review A.

[6]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[7]  Barry C. Sanders,et al.  Generalized Multiphoton Quantum Interference , 2014, 1403.3433.

[8]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[9]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[10]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[11]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[12]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[13]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[14]  F. Sciarrino,et al.  "Active" Teleportation of a Quantum Bit , 2002 .

[15]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[16]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[17]  Mario Krenn,et al.  Entanglement by Path Identity. , 2016, Physical review letters.

[18]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[19]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[20]  Michael J. Bremner,et al.  Quantum sampling problems, BosonSampling and quantum supremacy , 2017, npj Quantum Information.

[21]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[22]  Gregor Weihs,et al.  Totally Destructive Many-Particle Interference. , 2018, Physical review letters.

[23]  Rocco A. Servedio,et al.  Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms , 2012 .

[24]  Sae Woo Nam,et al.  Direct generation of three-photon polarization entanglement , 2014, Nature Photonics.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Michael J. Strain,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2014, Nature Communications.

[27]  Alex Arkhipov,et al.  BosonSampling is robust against small errors in the network matrix , 2014, 1412.2516.

[28]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[29]  Ming Li,et al.  On-chip transverse-mode entangled photon pair source , 2018, npj Quantum Information.

[30]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.

[31]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[32]  Christian Weedbrook,et al.  Gaussian boson sampling for perfect matchings of arbitrary graphs , 2017, Physical Review A.

[33]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[34]  Saleh Rahimi-Keshari,et al.  What can quantum optics say about complexity theory? , 2014, Physical review letters.

[35]  Andreas Björklund,et al.  A Faster Hafnian Formula for Complex Matrices and Its Benchmarking on a Supercomputer , 2018, ACM J. Exp. Algorithmics.

[36]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[37]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[38]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[39]  Scott Aaronson,et al.  A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[41]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[42]  S. Ataman A graphical method in quantum optics , 2018 .

[43]  J. D. Franson,et al.  Demonstration of feed-forward control for linear optics quantum computation , 2002 .

[44]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[45]  Anton Zeilinger,et al.  Theory of quantum imaging with undetected photons , 2015, 1504.00402.

[46]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[47]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[48]  S. Ataman The quantum optical description of three experiments involving non-linear optics using a graphical method , 2014, 1410.6649.

[49]  K. Życzkowski,et al.  Multipartite entanglement in heterogeneous systems , 2016, 1602.08064.

[50]  W Steven Kolthammer,et al.  Distinguishability and Many-Particle Interference. , 2016, Physical review letters.

[51]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[52]  G Weihs,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[53]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[54]  Mario Krenn,et al.  Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings. , 2017, Physical review letters.

[55]  Andreas Björklund,et al.  Counting perfect matchings as fast as Ryser , 2011, SODA.

[56]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[57]  Piotr Migdal,et al.  Multiphoton states related via linear optics , 2014, 1403.3069.

[58]  Christine Silberhorn,et al.  On-chip generation of photon-triplet states. , 2016, Optics express.

[59]  Lucien Hardy,et al.  Source of photons with correlated polarisations and correlated directions , 1992 .

[60]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[61]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[62]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[63]  V. Shchesnovich,et al.  Collective phases of identical particles interfering on linear multiports , 2017, Physical Review A.

[64]  Herzog,et al.  Frustrated two-photon creation via interference. , 1994, Physical review letters.

[65]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[66]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[67]  Mark G. Thompson,et al.  Programmable four-photon graph states on a silicon chip , 2018, Nature Communications.

[68]  Andreas Björklund,et al.  A faster hafnian formula for complex matrices and its benchmarking on the Titan supercomputer , 2018, ArXiv.

[69]  S. Ramelow,et al.  Direct generation of photon triplets using cascaded photon-pair sources , 2010, Nature.

[70]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[71]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[72]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[73]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[74]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[75]  Yuri Gurevich,et al.  Logic in Computer Science , 1993, Current Trends in Theoretical Computer Science.

[76]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[77]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[78]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[79]  P. Alam ‘K’ , 2021, Composites Engineering.

[80]  John Calsamiglia Generalized measurements by linear elements , 2002 .

[81]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[82]  A. Zeilinger,et al.  Quantum teleportation using active feed-forward between two Canary Islands , 2012, 1205.3909.

[83]  Christian Kurtsiefer,et al.  Experimental realization of a three-qubit entangled W state. , 2004, Physical review letters.

[84]  Xiao Jiang,et al.  Toward Scalable Boson Sampling with Photon Loss. , 2018, Physical review letters.

[85]  H. Hosoya The Topological Index Z Before and After 1971 , 2003 .

[86]  S. Ataman Field operator transformations in quantum optics using a novel graphical method with applications to beam splitters and interferometers , 2014, 1407.8064.

[87]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[88]  Géza Tóth,et al.  Experimental entanglement of a six-photon symmetric Dicke state. , 2009, Physical review letters.

[89]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[90]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[91]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[92]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[93]  Zhang An,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2005 .

[94]  L. Mandel,et al.  Induced coherence without induced emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[95]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[96]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[97]  E. R. Caianiello,et al.  On quantum field theory — I: explicit solution of Dyson’s equation in electrodynamics without use of feynman graphs , 1953 .

[98]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[99]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[100]  Lance Fortnow,et al.  Proceedings of the forty-third annual ACM symposium on Theory of computing , 2011, STOC 2011.

[101]  B. Hiesmayr,et al.  Observation of Four-Photon Orbital Angular Momentum Entanglement. , 2015, Physical review letters.

[102]  Shmuel Friedland,et al.  Graph isomorphism and Gaussian boson sampling , 2018, 1810.10644.

[103]  Carlton M. Caves,et al.  Sufficient Conditions for Efficient Classical Simulation of Quantum Optics , 2015, 1511.06526.

[104]  Nicolas C. Menicucci,et al.  Graphical calculus for Gaussian pure states , 2010, 1007.0725.

[105]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[106]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[107]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[108]  B. Coecke Kindergarten Quantum Mechanics: Lecture Notes , 2006 .