Ca2+-saturated calmodulin binds tightly to the N-terminal domain of A-type fibroblast growth factor homologous factors

[1]  S. Marx,et al.  Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding–deficient channels , 2020, JCI insight.

[2]  A. Hudmon,et al.  Calmodulin binds to the N-terminal domain of the cardiac sodium channel Nav1.5 , 2020, bioRxiv.

[3]  G. Tomaselli,et al.  Ca2+-dependent regulation of sodium channels NaV1.4 and NaV1.5 is controlled by the post-IQ motif , 2019, Nature Communications.

[4]  S. Dib-Hajj,et al.  Fibroblast growth factor homologous factor 2 (FGF-13) associates with Nav1.7 in DRG neurons and alters its current properties in an isoform-dependent manner , 2019, Neurobiology of pain.

[5]  G. Tomaselli,et al.  Allosteric regulators selectively prevent Ca2+-feedback of CaV and NaV channels , 2018, eLife.

[6]  R. MacKinnon,et al.  Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures , 2018, Science.

[7]  Christopher N. Johnson,et al.  A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. , 2018, Structure.

[8]  T. Ha,et al.  Voltage-gated sodium channels assemble and gate as dimers , 2017, Nature Communications.

[9]  M. A. Shea,et al.  Backbone resonance assignments of complexes of human voltage-dependent sodium channel NaV1.2 IQ motif peptide bound to apo calmodulin and to the C-domain fragment of apo calmodulin , 2017, Biomolecular NMR Assignments.

[10]  M. A. Shea,et al.  Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel NaV1.2. , 2017, Biophysical chemistry.

[11]  D. Sacks,et al.  Calmodulin Lobes Facilitate Dimerization and Activation of Estrogen Receptor-α* , 2017, The Journal of Biological Chemistry.

[12]  G. Pitt,et al.  FGF14 is a regulator of KCNQ2/3 channels , 2016, Proceedings of the National Academy of Sciences.

[13]  Manu Ben-Johny,et al.  Detecting stoichiometry of macromolecular complexes in live cells using FRET , 2016, Nature Communications.

[14]  X. J. Liu,et al.  Spindle function in Xenopus oocytes involves possible nanodomain calcium signaling , 2016, Molecular biology of the cell.

[15]  David J Weber,et al.  Structure of the STRA6 receptor for retinol uptake , 2016, Science.

[16]  Hailin Zhang,et al.  FGF13 modulates the gating properties of the cardiac sodium channel Nav1.5 in an isoform-specific manner , 2016, Channels.

[17]  G. Pitt,et al.  Polarized localization of voltage-gated Na+ channels is regulated by concerted FGF13 and FGF14 action , 2016, Proceedings of the National Academy of Sciences.

[18]  J. Nerbonne,et al.  Proteomic analysis of native cerebellar iFGF14 complexes , 2016, Channels.

[19]  M. A. Shea,et al.  Opposing orientations of the anti‐psychotic drug trifluoperazine selected by alternate conformations of M144 in calmodulin , 2015, Proteins.

[20]  Gert Vriend,et al.  New ways to boost molecular dynamics simulations , 2015, J. Comput. Chem..

[21]  Richard D. LeDuc,et al.  Quantitative Proteomics Reveals Protein–Protein Interactions with Fibroblast Growth Factor 12 as a Component of the Voltage-Gated Sodium Channel 1.2 (Nav1.2) Macromolecular Complex in Mammalian Brain , 2015, Molecular & Cellular Proteomics.

[22]  G. Tomaselli,et al.  Regulation of the Nav1.5 cytoplasmic domain by Calmodulin , 2014, Nature Communications.

[23]  Seok-Yong Lee,et al.  Structural analyses of Ca2+/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation , 2014, Nature Communications.

[24]  J. Nerbonne,et al.  FGF14 localization and organization of the axon initial segment , 2013, Molecular and Cellular Neuroscience.

[25]  Ming‐Jen Lee,et al.  A Novel SCN9A Mutation Responsible for Primary Erythromelalgia and Is Resistant to the Treatment of Sodium Channel Blockers , 2013, PloS one.

[26]  S. Dib-Hajj,et al.  Gain-of-function Nav1.8 mutations in painful neuropathy , 2012, Proceedings of the National Academy of Sciences.

[27]  H. Kurahashi,et al.  Clinical spectrum of SCN2A mutations , 2012, Brain and Development.

[28]  Seok-Yong Lee,et al.  Crystal structure of the ternary complex of a NaV C-terminal domain, a fibroblast growth factor homologous factor, and calmodulin. , 2012, Structure.

[29]  F. van Petegem,et al.  Crystallographic basis for calcium regulation of sodium channels , 2012, Proceedings of the National Academy of Sciences.

[30]  N. Bursac,et al.  Fibroblast Growth Factor Homologous Factor 13 Regulates Na+ Channels and Conduction Velocity in Murine Hearts , 2011, Circulation research.

[31]  G. Pitt,et al.  Identification of Novel Interaction Sites that Determine Specificity between Fibroblast Growth Factor Homologous Factors and Voltage-gated Sodium Channels* , 2011, The Journal of Biological Chemistry.

[32]  M. A. Shea,et al.  Structural and energetic determinants of apo calmodulin binding to the IQ motif of the Na(V)1.2 voltage-dependent sodium channel. , 2011, Structure.

[33]  M. A. Shea,et al.  Recognition of β–calcineurin by the domains of calmodulin: Thermodynamic and structural evidence for distinct roles , 2011, Proteins.

[34]  E. Isacoff,et al.  Multiple C‐terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization , 2010, The EMBO journal.

[35]  Egidio D'Angelo,et al.  Long‐term inactivation particle for voltage‐gated sodium channels , 2010, The Journal of physiology.

[36]  A. Bax,et al.  SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network , 2010, Journal of biomolecular NMR.

[37]  F. van Petegem,et al.  A Double Tyrosine Motif in the Cardiac Sodium Channel Domain III-IV Linker Couples Calcium-dependent Calmodulin Binding to Inactivation Gating , 2009, The Journal of Biological Chemistry.

[38]  K. Yamakawa,et al.  De novo mutations of voltage-gated sodium channel αII gene SCN2A in intractable epilepsies , 2009, Neurology.

[39]  J. Nerbonne,et al.  FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels , 2009, Molecular and Cellular Neuroscience.

[40]  A. Wilde,et al.  Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. , 2009, Heart rhythm.

[41]  M. A. Shea,et al.  Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII , 2009, Proteins.

[42]  M. Mohammadi,et al.  Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels* , 2009, The Journal of Biological Chemistry.

[43]  P. C. Viswanathan,et al.  Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin* , 2009, Journal of Biological Chemistry.

[44]  F. van Petegem,et al.  Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. , 2008, Structure.

[45]  D. Douguet,et al.  HELIQUEST: a web server to screen sequences with specific alpha-helical properties , 2008, Bioinform..

[46]  Kengo Kinoshita,et al.  Prediction of disordered regions in proteins based on the meta approach , 2008, Bioinform..

[47]  M. A. Shea,et al.  Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II , 2008, Proteins.

[48]  C. V. Vander Kooi,et al.  Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. , 2008, Structure.

[49]  G. Tomaselli,et al.  Calmodulin Regulation of NaV1.4 Current: Role of Binding to the Carboxyl Terminus , 2008, The Journal of general physiology.

[50]  M. A. Shea,et al.  The neuronal voltage-dependent sodium channel type II IQ motif lowers the calcium affinity of the C-domain of calmodulin. , 2008, Biochemistry.

[51]  J. Hell,et al.  The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. , 2007, Structure.

[52]  Eric S. Silver,et al.  A Novel and Lethal De Novo LQT-3 Mutation in a Newborn with Distinct Molecular Pharmacology and Therapeutic Response , 2007, PloS one.

[53]  Richa Agarwala,et al.  COBALT: constraint-based alignment tool for multiple protein sequences , 2007, Bioinform..

[54]  Anne Houdusse,et al.  Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features , 2006, Proceedings of the National Academy of Sciences.

[55]  D. Bers,et al.  Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. , 2006, Journal of molecular and cellular cardiology.

[56]  A. Persechini,et al.  Biphasic Ca2+-dependent switching in a calmodulin-IQ domain complex. , 2006, Biochemistry.

[57]  J. Balser,et al.  Calcium-dependent regulation of the voltage-gated sodium channel hH1: intrinsic and extrinsic sensors use a common molecular switch. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Franceschetti,et al.  Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Filip Van Petegem,et al.  Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex , 2005, Nature Structural &Molecular Biology.

[60]  J. Nerbonne,et al.  Fibroblast growth factor 14 is an intracellular modulator of voltage‐gated sodium channels , 2005, The Journal of physiology.

[61]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[62]  D. Tester,et al.  Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. , 2005, Heart rhythm.

[63]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[64]  K. Török,et al.  Ca2+/Calmodulin-Dependent Activation and Inactivation Mechanisms of αCaMKII and Phospho-Thr286-αCaMKII† , 2004 .

[65]  B. Ding,et al.  Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia , 2004, Journal of Medical Genetics.

[66]  M. Mohammadi,et al.  Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology with FGFs* , 2003, Journal of Biological Chemistry.

[67]  Ron D. Appel,et al.  ExPASy: the proteomics server for in-depth protein knowledge and analysis , 2003, Nucleic Acids Res..

[68]  Yukitoshi Takahashi,et al.  Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. , 2003, Brain : a journal of neurology.

[69]  Sulayman D. Dib-Hajj,et al.  Modulation of the Cardiac Sodium Channel Nav1.5 by Fibroblast Growth Factor Homologous Factor 1B* , 2003, The Journal of Biological Chemistry.

[70]  M. A. Shea,et al.  An interdomain linker increases the thermostability and decreases the calcium affinity of the calmodulin N-domain. , 2002, Biochemistry.

[71]  W. Catterall,et al.  Role of the C-terminal domain in inactivation of brain and cardiac sodium channels , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S. Dib-Hajj,et al.  Fibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN)* , 2001, The Journal of Biological Chemistry.

[73]  M Montal,et al.  A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Goldfarb,et al.  Fibroblast growth factor homologous factors are intracellular signaling proteins , 2001, Current Biology.

[75]  Jeffrey J. Clare,et al.  Distribution of voltage‐gated sodium channel α‐subunit and β‐subunit mRNAs in human hippocampal formation, cortex, and cerebellum , 2000 .

[76]  K. Nagayama,et al.  Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity? , 2000, Biochemistry.

[77]  J. Nathans,et al.  Isoform Diversity among Fibroblast Growth Factor Homologous Factors Is Generated by Alternative Promoter Usage and Differential Splicing* , 2000, The Journal of Biological Chemistry.

[78]  Masaya Orita,et al.  A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase , 1999, Nature Structural Biology.

[79]  A. Persechini,et al.  The Relationship between the Free Concentrations of Ca2+ and Ca2+-calmodulin in Intact Cells* , 1999, The Journal of Biological Chemistry.

[80]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[81]  Vann Bennett,et al.  AnkyrinG Is Required for Clustering of Voltage-gated Na Channels at Axon Initial Segments and for Normal Action Potential Firing , 1998, The Journal of cell biology.

[82]  J. Ovádi,et al.  Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies. , 1998, Biochemistry.

[83]  M. A. Shea,et al.  Interactions between domains of apo calmodulin alter calcium binding and stability. , 1998, Biochemistry.

[84]  D. Birnbaum,et al.  Murine FGF-12 and FGF-13: expression in embryonic nervous system, connective tissue and heart , 1997, Mechanisms of Development.

[85]  A. Persechini,et al.  Detection in Living Cells of Ca2+-dependent Changes in the Fluorescence Emission of an Indicator Composed of Two Green Fluorescent Protein Variants Linked by a Calmodulin-binding Sequence , 1997, The Journal of Biological Chemistry.

[86]  J. Nathans,et al.  Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Huganir,et al.  Inactivation of NMDA Receptors by Direct Interaction of Calmodulin with the NR1 Subunit , 1996, Cell.

[88]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[89]  J. Sutcliffe,et al.  Calmodulin Stabilizes an Amphiphilic α-Helix within RC3/Neurogranin and GAP-43/Neuromodulin Only When Ca2+ Is Absent (*) , 1995, The Journal of Biological Chemistry.

[90]  Arthur J Moss,et al.  SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome , 1995, Cell.

[91]  W. Cook,et al.  Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. , 1994, Biochemistry.

[92]  J. Sutcliffe,et al.  Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability. , 1994, The Journal of biological chemistry.

[93]  Y. Katsube,et al.  Crystal structure of basic fibroblast growth factor at 1.6 A resolution. , 1994, Journal of biochemistry.

[94]  F A Quiocho,et al.  Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. , 1992, Science.

[95]  H. Schulman,et al.  Decoding calcium signals by multifunctional CaM kinase. , 1992, Cell calcium.

[96]  D. Storm,et al.  Characterization of the calmodulin binding domain of neuromodulin. Functional significance of serine 41 and phenylalanine 42. , 1991, The Journal of biological chemistry.

[97]  William A. Catterall,et al.  Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons , 1989, Neuron.

[98]  P. Vassilev,et al.  Identification of an intracellular peptide segment involved in sodium channel inactivation. , 1988, Science.

[99]  C. Klee,et al.  Calmodulin binding by calcineurin. Ligand-induced renaturation of protein immobilized on nitrocellulose. , 1987, The Journal of biological chemistry.

[100]  W. Catterall,et al.  The sodium channel from rat brain. Separation and characterization of subunits. , 1985, The Journal of biological chemistry.

[101]  A. Means,et al.  Bacterial expression and characterization of proteins derived from the chicken calmodulin cDNA and a calmodulin processed gene. , 1985, The Journal of biological chemistry.

[102]  C. Klee,et al.  Interaction of calmodulin with myosin light chain kinase and cAMP-dependent protein kinase in bovine brain. , 1981, The Journal of biological chemistry.

[103]  P. Greengard,et al.  Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein , 1978, Nature.

[104]  W. Cheung,et al.  Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. , 1970 .

[105]  T. Arndt Crystal , 2019, Springer Reference Medizin.

[106]  W. Chazin,et al.  NMR studies of the interaction of calmodulin with IQ motif peptides. , 2013, Methods in molecular biology.

[107]  John H. Caldwell,et al.  Expression and distribution of voltage-gated sodium channels in the cerebellum , 2008, The Cerebellum.

[108]  D. Leahy,et al.  Crystal structure of the Ca V 2 IQ domain in complex with Ca2+/ calmodulin: High-resolution mechanistic implications for channel regulation by Ca 2+ , 2008 .

[109]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[110]  D. Newton,et al.  Regulation of the calcium signal by calmodulin. , 1986, Ciba Foundation symposium.

[111]  浅野 富子 Cyclic3',5'-nucleotide phosphodiesteraseに関する研究 , 1977 .