Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

[1]  R. Ferrante,et al.  Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis , 2013, Neurobiology of Disease.

[2]  Xin Wang,et al.  Expression of Wnt5a and its receptor Fzd2 is changed in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice. , 2013, International journal of clinical and experimental pathology.

[3]  Xin Wang,et al.  Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice , 2013, Biotechnology Letters.

[4]  S. McKnight,et al.  Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease , 2012, Proceedings of the National Academy of Sciences.

[5]  S. McKnight,et al.  Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis , 2012, Proceedings of the National Academy of Sciences.

[6]  B. Traynor,et al.  The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients , 2012, Acta Neuropathologica.

[7]  Wei Song,et al.  Association analysis of LRP8 SNP rs3820198 and rs5174 with Parkinson’s disease in Han Chinese population , 2012, Neurological research.

[8]  B. Pettmann,et al.  Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model , 2012, Neuropharmacology.

[9]  B. Spiegelman,et al.  Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. , 2012, Cell metabolism.

[10]  Xin Wang,et al.  Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice , 2012, Neurological research.

[11]  Xin Wang,et al.  Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. , 2012, Biochemical and biophysical research communications.

[12]  R. Bowser,et al.  Neuroprotection for amyotrophic lateral sclerosis: role of stem cells, growth factors, and gene therapy. , 2012, Central nervous system agents in medicinal chemistry.

[13]  E. Aronica,et al.  The BH4 domain of Bcl-X(L) rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. , 2012, Human molecular genetics.

[14]  Q. Dong,et al.  Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro , 2012, Experimental Neurology.

[15]  Huiyun Liang,et al.  PGC‐1α protects neurons and alters disease progression in an amyotrophic lateral sclerosis mouse model , 2011, Muscle & nerve.

[16]  J. Trojanowski,et al.  A yeast functional screen predicts new candidate ALS disease genes , 2011, Proceedings of the National Academy of Sciences.

[17]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[18]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[19]  Wei Li,et al.  The Melatonin MT1 Receptor Axis Modulates Mutant Huntingtin-Mediated Toxicity , 2011, The Journal of Neuroscience.

[20]  N. Maragakis,et al.  Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo , 2011, Proceedings of the National Academy of Sciences.

[21]  C. Ko,et al.  Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis , 2011, Experimental Neurology.

[22]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[23]  J. Mendell,et al.  Astrocytes from Familial and Sporadic ALS Patients are Toxic to Motor Neurons , 2011, Nature Biotechnology.

[24]  V. Crippa,et al.  Muscle cells and motoneurons differentially remove mutant SOD1 causing familial amyotrophic lateral sclerosis , 2011, Journal of neurochemistry.

[25]  J. Lasiene,et al.  Glial Cells in Amyotrophic Lateral Sclerosis , 2011, Neurology research international.

[26]  Q. Dong,et al.  Therapeutic application of histone deacetylase inhibitors for stroke. , 2011, Central Nervous System Agents in Medicinal Chemistry.

[27]  C. Bendotti,et al.  Talampanel reduces the level of motoneuronal calcium in transgenic mutant SOD1 mice only if applied presymptomatically , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[28]  D. M. White,et al.  Cold pre‐conditioning neuroprotection depends on TNF‐α and is enhanced by blockade of interleukin‐11 , 2011, Journal of neurochemistry.

[29]  M. McCullough,et al.  Vitamin E intake and risk of amyotrophic lateral sclerosis: a pooled analysis of data from 5 prospective cohort studies. , 2011, American journal of epidemiology.

[30]  W. Robberecht,et al.  Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease , 2011, The Lancet Neurology.

[31]  W. Le,et al.  Prevention of Motor Neuron Degeneration by Novel Iron Chelators in SOD1G93A Transgenic Mice of Amyotrophic Lateral Sclerosis , 2011, Neurodegenerative Diseases.

[32]  M. Bellingham A Review of the Neural Mechanisms of Action and Clinical Efficiency of Riluzole in Treating Amyotrophic Lateral Sclerosis: What have we Learned in the Last Decade? , 2011, CNS neuroscience & therapeutics.

[33]  R. Bowser,et al.  Cystatin C: A Candidate Biomarker for Amyotrophic Lateral Sclerosis , 2010, PloS one.

[34]  Robert H. Brown,et al.  Screening for inhibitors of the SOD1 gene promoter: Pyrimethamine does not reduce SOD1 levels in cell and animal models , 2010, Neuroscience Letters.

[35]  S. Vandenberg,et al.  Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. , 2010, The Journal of clinical investigation.

[36]  L. Martin Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. , 2010, IDrugs : the investigational drugs journal.

[37]  C. Bendotti,et al.  Unraveling the complexity of amyotrophic lateral sclerosis: recent advances from the transgenic mutant SOD1 mice. , 2010, CNS & neurological disorders drug targets.

[38]  D. Brat,et al.  Discovery of a Proneurogenic, Neuroprotective Chemical , 2010, Cell.

[39]  L. Martin,et al.  Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. , 2010, Human molecular genetics.

[40]  E. Mugnaini,et al.  FUS‐immunoreactive inclusions are a common feature in sporadic and non‐SOD1 familial amyotrophic lateral sclerosis , 2010, Annals of neurology.

[41]  M. Weber,et al.  Tetrahydrocannabinol (THC) for cramps in amyotrophic lateral sclerosis: a randomised, double-blind crossover trial , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[42]  R. Conwit,et al.  Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial , 2010, The Lancet Neurology.

[43]  S. Petri,et al.  Modulation of Synaptic Transmission and Analysis of Neuroprotective Effects of Valproic Acid and Derivates in Rat Embryonic Motoneurons , 2010, Cellular and Molecular Neurobiology.

[44]  R. Bowser,et al.  The application of biomarkers in clinical trials for motor neuron disease. , 2010, Biomarkers in medicine.

[45]  H. Braak,et al.  Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord , 2010, Acta Neuropathologica.

[46]  A. Taraszewska,et al.  Neuroprotective effect of erythropoietin in amyotrophic lateral sclerosis (ALS) model in vitro. Ultrastructural study. , 2010, Folia neuropathologica.

[47]  D. Howells,et al.  Can Animal Models of Disease Reliably Inform Human Studies? , 2010, PLoS medicine.

[48]  L. Piedrafita,et al.  Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord , 2010, Neuroscience.

[49]  Albert C. Ludolph,et al.  Guidelines for preclinical animal research in ALS/MND: A consensus meeting , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[50]  R. Tamura,et al.  A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[51]  T. Hortobágyi,et al.  TDP‐43 is consistently co‐localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations , 2009, Neuropathology : official journal of the Japanese Society of Neuropathology.

[52]  Xin Wang The Antiapoptotic Activity of Melatonin in Neurodegenerative Diseases , 2009, CNS neuroscience & therapeutics.

[53]  M. Cudkowicz,et al.  Arimoclomol: a potential therapy under development for ALS , 2009, Expert opinion on investigational drugs.

[54]  S. Mandel,et al.  Neuroprotective and neuritogenic activities of novel multimodal iron‐chelating drugs in motor‐neuron‐like NSC‐34 cells and transgenic mouse model of amyotrophic lateral sclerosis , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  M. Beal,et al.  Lenalidomide (Revlimid®) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis , 2009, Experimental Neurology.

[56]  J. Gal,et al.  Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin‐independent mechanism , 2009, Journal of neurochemistry.

[57]  Yan Leng,et al.  Multiple roles of HDAC inhibition in neurodegenerative conditions , 2009, Trends in Neurosciences.

[58]  Robert H. Brown,et al.  XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. , 2009, Genes & development.

[59]  M. Meisler,et al.  Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2 , 2009, Human molecular genetics.

[60]  Weihua Zhao,et al.  Microglia in ALS: The Good, The Bad, and The Resting , 2009, Journal of Neuroimmune Pharmacology.

[61]  S. Perrin,et al.  No Benefit from Chronic Lithium Dosing in a Sibling-Matched, Gender Balanced, Investigator-Blinded Trial Using a Standard Mouse Model of Familial ALS , 2009, PloS one.

[62]  A Florence Keller,et al.  Live imaging of amyotrophic lateral sclerosis pathogenesis: Disease onset is characterized by marked induction of GFAP in Schwann cells , 2009, Glia.

[63]  R. Roos,et al.  The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis , 2009, Neurobiology of Disease.

[64]  A. Grinberg,et al.  A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis , 2009, Experimental Neurology.

[65]  C. Duyckaerts,et al.  Accumulation of TDP-43 and α-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation , 2009, Acta Neuropathologica.

[66]  K. Staats,et al.  Astrocytes in amyotrophic lateral sclerosis: direct effects on motor neuron survival , 2009, Journal of biological physics.

[67]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[68]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[69]  Jeffrey A. Cohen,et al.  Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: A phase II open label clinical trial , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[70]  C. Cheroni,et al.  Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[71]  F. Gage,et al.  Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. , 2008, Cell stem cell.

[72]  I. Chiu,et al.  T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS , 2008, Proceedings of the National Academy of Sciences.

[73]  A. Musarò,et al.  Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. , 2008, Cell metabolism.

[74]  A. Volterra,et al.  Focal degeneration of astrocytes in amyotrophic lateral sclerosis , 2008, Cell Death and Differentiation.

[75]  S. Appel,et al.  CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS , 2008, Proceedings of the National Academy of Sciences.

[76]  B. Kalmar,et al.  Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1G93A mouse model of ALS , 2008, Journal of neurochemistry.

[77]  S. Nakano,et al.  Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice , 2008, Experimental Neurology.

[78]  J. Gámez [Minocycline for the treatment of amyotrophic lateral sclerosis: neuroprotector or neurotoxin? Reflections on another failure of translational medicine]. , 2008, Neurologia.

[79]  Martin Drozda,et al.  Inhibitors of Cytochrome c Release with Therapeutic Potential for Huntington's Disease , 2008, The Journal of Neuroscience.

[80]  V. Gribkoff,et al.  KNS‐760704 [(6R)‐4,5,6,7‐tetrahydro‐N6‐propyl‐2, 6‐benzothiazole‐diamine dihydrochloride monohydrate] for the Treatment of Amyotrophic Lateral Sclerosis , 2008, CNS neuroscience & therapeutics.

[81]  D. Chuang,et al.  Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model , 2008, Neuroscience.

[82]  D. Schoenfeld,et al.  Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis , 2008, Muscle & nerve.

[83]  L. Goldstein,et al.  Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice , 2008, Proceedings of the National Academy of Sciences.

[84]  K. Talbot,et al.  Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS , 2008, Progress in Neurobiology.

[85]  D. Gutmann,et al.  Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis , 2008, Nature Neuroscience.

[86]  Gabriele Siciliano,et al.  Lithium delays progression of amyotrophic lateral sclerosis , 2008, Proceedings of the National Academy of Sciences.

[87]  H. Mitsumoto,et al.  Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial , 2007, The Lancet Neurology.

[88]  Seung-Up Kim,et al.  Oral Administration of Memantine Prolongs Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2007, Journal of clinical neurology.

[89]  D. Cleveland,et al.  Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease , 2007, Nature Neuroscience.

[90]  B. Traynor,et al.  Genetics of sporadic amyotrophic lateral sclerosis. , 2007, Human molecular genetics.

[91]  Dries Braeken,et al.  Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity , 2007, Proceedings of the National Academy of Sciences.

[92]  A. Destée,et al.  Phase II/III randomized trial of TCH346 in patients with ALS , 2007, Neurology.

[93]  Oxana V. Baranova,et al.  The lipophilic metal chelators DP‐109 and DP‐460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis , 2007, Journal of neurochemistry.

[94]  R. Ferrante,et al.  Nortriptyline delays disease onset in models of chronic neurodegeneration , 2007, The European journal of neuroscience.

[95]  C. Henderson,et al.  Identification and Characterization of Cholest-4-en-3-one, Oxime (TRO19622), a Novel Drug Candidate for Amyotrophic Lateral Sclerosis , 2007, Journal of Pharmacology and Experimental Therapeutics.

[96]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[97]  Albert C. Ludolph,et al.  Cerebrospinal fluid erythropoietin (EPO) in amyotrophic lateral sclerosis , 2007, Neuroscience Letters.

[98]  Fujian Zhang,et al.  p62 Accumulates and Enhances Aggregate Formation in Model Systems of Familial Amyotrophic Lateral Sclerosis* , 2007, Journal of Biological Chemistry.

[99]  M. Benatar Lost in translation: Treatment trials in the SOD1 mouse and in human ALS , 2007, Neurobiology of Disease.

[100]  Daniel Offen,et al.  Erythropoietin delays disease onset in an amyotrophic lateral sclerosis model , 2007, Experimental Neurology.

[101]  J. Crow,et al.  The CB2 cannabinoid agonist AM‐1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset , 2006, Journal of neurochemistry.

[102]  C. Perry,et al.  Rasagiline , 2012, Drugs.

[103]  K. Nave,et al.  Reduced oxidative damage in ALS by high‐dose enteral melatonin treatment , 2006, Journal of pineal research.

[104]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[105]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[106]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[107]  C. Crosio,et al.  Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials , 2006, Proceedings of the National Academy of Sciences.

[108]  M. Pangalos,et al.  Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis , 2006, Neurobiology of Disease.

[109]  L. Chimelli,et al.  Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis , 2006, Neuroscience Letters.

[110]  A. Makriyannis,et al.  AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. , 2006, European journal of pharmacology.

[111]  P. Ghezzi,et al.  Nonhematopoietic Erythropoietin Derivatives Prevent Motoneuron Degeneration In Vitro and In Vivo , 2006, Molecular medicine.

[112]  D. Chuang,et al.  Endogenous α-Synuclein Is Induced by Valproic Acid through Histone Deacetylase Inhibition and Participates in Neuroprotection against Glutamate-Induced Excitotoxicity , 2006, The Journal of Neuroscience.

[113]  D. Schoenfeld,et al.  Trial of celecoxib in amyotrophic lateral sclerosis , 2006, Annals of neurology.

[114]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[115]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[116]  P. Anand,et al.  COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord , 2006, BMC neurology.

[117]  Dong-Kug Choi,et al.  Thalidomide and Lenalidomide Extend Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2006, The Journal of Neuroscience.

[118]  Dongxian Zhang,et al.  Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model , 2005, The European journal of neuroscience.

[119]  M. Beal,et al.  Manganese porphyrin given at symptom onset markedly extends survival of ALS mice , 2005, Annals of neurology.

[120]  E. Bennett,et al.  Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. , 2005, Molecular cell.

[121]  W. Colledge Faculty Opinions recommendation of Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. , 2005 .

[122]  P. Fisher,et al.  β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression , 2005, Nature.

[123]  W. Bradley,et al.  Cytochrome c Association with the Inner Mitochondrial Membrane Is Impaired in the CNS of G93A-SOD1 Mice , 2005, The Journal of Neuroscience.

[124]  S. Sakoda,et al.  Benefit of valproic acid in suppressing disease progression of ALS model mice , 2004, The European journal of neuroscience.

[125]  A. Ludolph,et al.  Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model , 2004, Journal of Neurology.

[126]  M. Beal,et al.  Clinically Approved Heterocyclics Act on a Mitochondrial Target and Reduce Stroke-induced Pathology , 2004, The Journal of experimental medicine.

[127]  Ole Gredal,et al.  Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal Mitochondria , 2004, Neuron.

[128]  Geoffrey Burnstock,et al.  Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice , 2004, Nature Medicine.

[129]  S. McAllister,et al.  Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[130]  K. Nakashima,et al.  Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum , 2004, Acta Neuropathologica.

[131]  H. Blauw,et al.  CGP 3466B has no effect on disease course of (G93A) mSOD1 transgenic mice , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[132]  M. Beal,et al.  Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis , 2003, Journal of neurochemistry.

[133]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[134]  R. Ferrante,et al.  Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[135]  G. Rotilio,et al.  Proteasome activation and nNOS down‐regulation in neuroblastoma cells expressing a Cu,Zn superoxide dismutase mutant involved in familial ALS , 2003, Journal of neurochemistry.

[136]  Robert M Friedlander,et al.  Apoptosis and caspases in neurodegenerative diseases. , 2003, The New England journal of medicine.

[137]  Rajiv R. Ratan,et al.  Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[138]  D. Chuang,et al.  Regulation of c‐Jun N‐terminal kinase, p38 kinase and AP‐1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection , 2003, Journal of neurochemistry.

[139]  Wenhua Zhang,et al.  Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS , 2003, Annals of neurology.

[140]  R. Miller,et al.  Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[141]  J. Rothstein,et al.  Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS , 2002, Annals of neurology.

[142]  R. Takahashi,et al.  Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis , 2002, Journal of neurochemistry.

[143]  R. Bowler,et al.  A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. , 2002, Free radical biology & medicine.

[144]  P. Mcgeer,et al.  Inflammatory processes in amyotrophic lateral sclerosis , 2002, Muscle & nerve.

[145]  J. Julien,et al.  Minocycline Slows Disease Progression in a Mouse Model of Amyotrophic Lateral Sclerosis , 2002, Neurobiology of Disease.

[146]  P. Caroni,et al.  Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron Disease , 2002, The Journal of Neuroscience.

[147]  W. Robberecht,et al.  Minocycline delays disease onset and mortality in a transgenic model of ALS , 2002, Neuroreport.

[148]  Betty Y. S. Kim,et al.  Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice , 2002, Nature.

[149]  G. Sobue,et al.  Differential expression of inflammation‐ and apoptosis‐related genes in spinal cords of a mutant SOD1 transgenic mouse 
model of familial amyotrophic lateral sclerosis , 2002, Journal of neurochemistry.

[150]  K. Hensley,et al.  Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. , 2002, Journal of neurochemistry.

[151]  J. Julien,et al.  Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-α , 2001, The Journal of cell biology.

[152]  P. Mcgeer,et al.  Marked increase in cyclooxygenase-2 in ALS spinal cord , 2001, Neurology.

[153]  A. Pramatarova,et al.  Neuron-Specific Expression of Mutant Superoxide Dismutase 1 in Transgenic Mice Does Not Lead to Motor Impairment , 2001, The Journal of Neuroscience.

[154]  B. Fiebich,et al.  Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia , 2001, The Journal of Neuroscience.

[155]  K. Csiszȧr,et al.  Intrathecal cyclosporin prolongs survival of late-stage ALS mice , 2001, Brain Research.

[156]  G. Rosoklija,et al.  Increased expression of the pro‐inflammatory enzyme cyclooxygenase‐2 in amyotrophic lateral sclerosis , 2001, Annals of neurology.

[157]  P. Mcgeer COX-2 and ALS , 2001, Amyotrophic Lateral Sclerosis and other Motor Neuron Disorders.

[158]  H. Stähelin,et al.  N‐Acetyl‐l‐cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on β‐amyloid secretion and tau phosphorylation , 2001, Journal of neurochemistry.

[159]  D. Cleveland,et al.  Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[160]  J. Rothstein,et al.  Inhibition of cyclooxygenase‐2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis , 2000, Annals of neurology.

[161]  Y. Sagot,et al.  An orally active anti‐apoptotic molecule (CGP 3466B) preserves mitochondria and enhances survival in an animal model of motoneuron disease , 2000, British journal of pharmacology.

[162]  O. Andreassen,et al.  N‐acetyl‐L‐cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis , 2000, Neuroreport.

[163]  G. Mora,et al.  Circulating levels of tumour necrosis factor-α and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis , 2000, Neuroscience Letters.

[164]  P. Stieg,et al.  Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. , 2000, Science.

[165]  A. Araque,et al.  Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. , 1999, Journal of neurobiology.

[166]  Ole A. Andreassen,et al.  Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis , 1999, Nature Medicine.

[167]  K. Titani,et al.  Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse , 1998, Brain Research.

[168]  Tullio Pozzan,et al.  Prostaglandins stimulate calcium-dependent glutamate release in astrocytes , 1998, Nature.

[169]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[170]  M. Gurney,et al.  The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies , 1997, Journal of the Neurological Sciences.

[171]  F. Poccia,et al.  Expression of a Cu,Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH‐SY5Y cells , 1997, FEBS letters.

[172]  Junying Yuan,et al.  Inhibition of ICE slows ALS in mice , 1997, Nature.

[173]  J. Roder,et al.  Reduction of Lower Motor Neuron Degeneration inwobbler Mice byN-Acetyl-l-Cysteine , 1996, The Journal of Neuroscience.

[174]  P. Benfield,et al.  Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. , 1996, Drugs.

[175]  D. Schiffer,et al.  Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis , 1996, Journal of the Neurological Sciences.

[176]  O. Blin,et al.  A Review of its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Potential in Amyotrophic Lateral Sclerosis , 1996 .

[177]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[178]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[179]  S. Warach,et al.  Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.