The reactions of Cr(CO)6, Fe(CO)5, and Ni(CO)4 with O2 yield viable oxo‐metal carbonyls

Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo‐metal [(OC)5CrO, (OC)4FeO, and (OC)3NiO] and dioxygen‐metal carbonyls [(OC)5CrOO, (OC)4FeOO, and (OC)3NiOO] are studied theoretically. All three oxo‐metal carbonyls were found to have triplet ground states, with metal‐oxo bond dissociation energies of 77 (CrO), 74 (FeO), and 51 (NiO) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal‐oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (CrOO), 21 (FeOO), and 4 (NiOO) kcal/mol] for the dioxygen‐metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2, driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. © 2014 Wiley Periodicals, Inc.

[1]  E. Weitz,et al.  Bonding Interactions in Olefin (C2X4, X = H, F, Cl, Br, I, CN) Iron Tetracarbonyl Complexes: Role of the Deformation Energy in Bonding and Reactivity , 2001 .

[2]  Jeremy N. Harvey,et al.  Does Compound I Vary Significantly between Isoforms of Cytochrome P450? , 2011, Journal of the American Chemical Society.

[3]  R. Grubbs,et al.  Terminal ruthenium carbido complexes as ??-donor ligandsElectronic supplementary information (ESI) available: additional crystallographic information. See http://www.rsc.org/suppdata/cc/b2/b207903h/ , 2002 .

[4]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[5]  S. Alvarez,et al.  Spin density distribution in transition metal complexes , 2005 .

[6]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[7]  G. Frenking,et al.  Structures and Bond Energies of the Transition Metal Hexacarbonyls M(CO)6 (M = Cr, Mo, W). A Theoretical Study , 1994 .

[8]  G. Frenking,et al.  Structure and Bonding of the Transition-Metal Carbonyl Complexes M(CO)5L (M = Cr, Mo, W) and M(CO)3L (M = Ni, Pd, Pt; L = CO, SiO, CS, N2, NO+, CN-, NC-, HCCH, CCH2, CH2, CF2, H2)1 , 1996 .

[9]  S. Shaik,et al.  Reactivity patterns of cytochrome P450 enzymes: multifunctionality of the active species, and the two states-two oxidants conundrum. , 2007, Natural product reports.

[10]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[11]  T. Koetzle,et al.  A Late-Transition Metal Oxo Complex: K7Na9[O=PtIV(H2O)L2], L = [PW9O34]9- , 2004, Science.

[12]  Ching‐Han Hu,et al.  Density Functional Study of N-Heterocyclic and Diamino Carbene Complexes: Comparison with Phosphines , 2004 .

[13]  C. Wllen Molecular structure and binding energies of monosubstituted hexacarbonyls of chromium, molybdenum, and tungsten: Relativistic density functional study , 1997 .

[14]  J. Burdett Production of carbonyl anions by the vacuum ultraviolet photolysis of matrix isolated metal carbonyls , 1973 .

[15]  R. Schrock Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). , 2006, Angewandte Chemie.

[16]  Michael Bühl,et al.  Geometries of Transition-Metal Complexes from Density-Functional Theory. , 2006, Journal of chemical theory and computation.

[17]  S. Grimme,et al.  Comprehensive Study of the Thermochemistry of First-Row Transition Metal Compounds by Spin Component Scaled MP2 and MP3 Methods , 2004 .

[18]  E. Fischer Auf dem Weg zu Carben‐ und Carbin‐Komplexen (Nobel‐Vortrag) , 1974 .

[19]  G. Frenking,et al.  Carbon complexes as electronically and sterically tunable analogues of carbon monoxide in coordination chemistry. , 2008, Journal of the American Chemical Society.

[20]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[21]  M. Poliakoff,et al.  ‘Chromyl carbonyl’. Synthesis of [CrO2(CO)2] in low-temperature matrices , 1982 .

[22]  E. Weitz,et al.  Interaction of H2 and Prototypical Solvent Molecules with Cr(CO)5 in the Gas Phase , 1994 .

[23]  Roald Hoffmann,et al.  IS CO A SPECIAL LIGAND IN ORGANOMETALLIC CHEMISTRY? THEORETICAL INVESTIGATION OF AB, FE(CO)4AB, AND FE(AB)5 (AB = N2, CO, BF, SIO) , 1998 .

[24]  A. J. Downs,et al.  Photooxidation of matrix-isolated iron pentacarbonyl. 1. Peroxo- and oxoiron carbonyl reaction intermediates , 1992 .

[25]  Ayusman Sen Mechanistic aspects of metal-catalyzed alternating copolymerization of olefins with carbon monoxide , 1993 .

[26]  A. Zewail,et al.  Ultrafast Electron Diffraction of Transient [Fe(CO)4 ]: Determination of Molecular Structure and Reaction Pathway. , 2001, Angewandte Chemie.

[27]  A. J. Downs,et al.  PHOTOOXIDATION OF MATRIX-ISOLATED NICKEL TETRACARBONYL IN THE PRESENCE OF DIOXYGEN , 1995 .

[28]  Ming Wah Wong,et al.  Vibrational frequency prediction using density functional theory , 1996 .

[29]  Lester Andrews,et al.  Reactions of Laser-Ablated Ni, Pd, and Pt Atoms with Carbon Monoxide: Matrix Infrared Spectra and Density Functional Calculations on M(CO)n (n = 1−4), M(CO)n- (n = 1−3), and M(CO)n+ (n = 1−2), (M = Ni, Pd, Pt) , 2000 .

[30]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[31]  P. Lyne,et al.  Molecular Orbital Analysis of the Intermediates and Products Generated by the Photooxidation of Iron Pentacarbonyl , 1993 .

[32]  R. Mitrić,et al.  Reactivity of atomic gold anions toward oxygen and the oxidation of CO: experiment and theory. , 2004, Journal of the American Chemical Society.

[33]  D. Goodman,et al.  Structure-reactivity correlations for oxide-supported metal catalysts: new perspectives from STM , 2000 .

[34]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[35]  Wolfram Koch,et al.  A Comparative Computational Study of Cationic Coinage Metal−Ethylene Complexes (C2H4)M+ (M = Cu, Ag, and Au) , 1996 .

[36]  M. Poliakoff,et al.  Formation of trans-M(O)2(CO)4 (M=Mo and W): intermediates in the photooxidation of matrix-isolated (M(CO)6 , 1984 .

[37]  M. Poliakoff,et al.  Peroxo and dioxo metal carbonyl intermediates in the photooxidation of matrix-isolated M(CO)6 (M = Cr, Mo, W) in the presence of dioxygen: a vibrational spectroscopic study using oxygen-18 , 1986 .

[38]  M. Su,et al.  Computational study of cycloaddition reactions of 16-electron d8 ML4 complexes with C60. , 2011, The journal of physical chemistry. A.

[39]  Lester Andrews,et al.  Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. , 2009, Chemical reviews.

[40]  Roald Hoffmann,et al.  Might BF and BNR2 Be Alternatives to CO? A Theoretical Quest for New Ligands in Organometallic Chemistry , 1998 .

[41]  Frank Weinhold,et al.  Natural bond orbital methods , 2012 .

[42]  G. Frenking,et al.  The nature of the bonding in transition-metal compounds. , 2000, Chemical reviews.

[43]  M. Bühl,et al.  Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes: multiple reaction pathways. , 2010, Journal of the American Chemical Society.

[44]  Christopher C. Cummins,et al.  Cleavage of the Nitrous Oxide NN Bond by a Tris(amido)molybdenum(III) Complex , 1995 .

[45]  E. Fischer,et al.  On the Existence of a Tungsten Carbonyl Carbene Complex , 1964 .

[46]  I. Bersuker,et al.  Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. , 2001, Chemical reviews.

[47]  M. Poliakoff,et al.  The Structure of [Fe(CO)4 ]-An Important New Chapter in a Long-Running Story. , 2001, Angewandte Chemie.

[48]  F. Weinhold,et al.  Valency and Bonding: Introduction and theoretical background , 2005 .

[49]  M. Poliakoff,et al.  Structure and reactions of matrix-isolated tetracarbonyliron(0) , 1975 .

[50]  H. Schaefer,et al.  Concerning the precision of standard density functional programs : Gaussian, molpro, nwchem, Q-chem, and gamess , 2006 .

[51]  E. Solomon,et al.  Electronic structures of active sites on metal oxide surfaces: definition of the copper-zinc oxide methanol synthesis catalyst by photoelectron spectroscopy , 1993 .

[52]  C. Cummins,et al.  Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex , 1995, Science.

[53]  G. Frenking,et al.  Ligand Site Preference in Iron Tetracarbonyl Complexes Fe(CO)4L (L = CO, CS, N2, NO+, CN–, NC–, η2‐C2H4, η2‐C2H2, CCH2, CH2, CF2, NH3, NF3, PH3, PF3, η2‐H2) , 2001 .

[54]  G. Frenking,et al.  Transition metal-carbon complexes. A theoretical study. , 2007, Journal of the American Chemical Society.

[55]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[56]  J. Mayer,et al.  Synthesis, reactions, and electronic structure of low-valent rhenium-oxo compounds. Crystal and molecular structure of Re(O)I(MeC.tplbond.CMe)2 , 1985 .

[57]  G. Wilkinson,et al.  Synthesis and X-ray crystal structure of oxotrimesityliridium(V) , 1993 .

[58]  G. Ozin,et al.  Trigonal Bipyramidal Chromium Pentacarbonyl and Its Implications to Structure and Bonding Considerations of Pentacarbonyls and Pentacarbonyl Anions , 1974 .

[59]  H. Schaefer,et al.  Binuclear and trinuclear chromium carbonyls with linear bridging carbonyl groups: isocarbonyl versus carbonyl bonding of carbon monoxide ligands. , 2010, The journal of physical chemistry. A.

[60]  Richard H. Holm,et al.  Metal-centered oxygen atom transfer reactions , 1987 .

[61]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[62]  D. Powell,et al.  The metathesis-facilitated synthesis of terminal ruthenium carbide complexes: a unique carbon atom transfer reaction. , 2002, Journal of the American Chemical Society.

[63]  J. Mayer,et al.  Low-valent oxo compounds. 7. Low-valent rhenium-oxo alkyl and -oxo hydride complexes. The stabilizing influence of the oxo ligand , 1989 .

[64]  K. Hodgson,et al.  Revisiting the polyoxometalate-based late-transition-metal-oxo complexes: the "oxo wall" stands. , 2012, Inorganic chemistry.

[65]  N. A. Moore,et al.  Theoretical and experimental consideration of the reactions between VxOy+ and ethylene. , 2003, Journal of the American Chemical Society.

[66]  S. Strauss,et al.  Nonclassical Metal-Carbonyls - (Ag(Co))(+) and (Ag(Co)(2))(+) , 1994 .

[67]  P. Snee,et al.  Triplet organometallic reactivity under ambient conditions: an ultrafast UV pump/IR probe study. , 2001, Journal of the American Chemical Society.

[68]  G. Frenking,et al.  Is It Possible to Synthesize a Low-Valent Transition Metal Complex with a Neutral Carbon Atom as Terminal Ligand? A Theoretical Study of (CO)4FeC† , 2000 .

[69]  R. Lindh,et al.  Structure and energetics of Cr(CO)6 and Cr(CO)5 , 1993 .

[70]  Walter Thiel,et al.  Theoretical study of the vibrational spectra of the transition metal carbonyls M(CO)6 [M=Cr, Mo, W], M(CO)5 [M=Fe, Ru, Os], and M(CO)4 [M=Ni, Pd, Pt] , 1995 .

[71]  Ludwig Mond,et al.  L.—Action of carbon monoxide on nickel , 1890 .

[72]  H. Werner Complexes of Carbon Monoxide and Its Relatives: An Organometallic Family Celebrates Its Birthday , 1990 .

[73]  Yoon Sup Lee,et al.  Density functional and Ab initio study of Cr(CO)n (n = 1-6) complexes. , 2007, The journal of physical chemistry. A.

[74]  Gernot Frenking,et al.  The bonding of acetylene and ethylene in high-valent and low-valent transition metal compounds , 1996 .

[75]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[76]  Jochen Autschbach,et al.  Theoretical methods of potential use for studies of inorganic reaction mechanisms. , 2005, Chemical reviews.

[77]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[78]  J. Kampf,et al.  Terminal Carbido Complexes of Osmium: Synthesis, Structure, and Reactivity Comparison to the Ruthenium Analogues , 2007 .

[79]  D. Michael P. Mingos,et al.  A historical perspective on Dewar's landmark contribution to organometallic chemistry , 2001 .

[80]  G. Schreckenbach,et al.  A Reassessment of the First Metal-Carbonyl Dissociation Energy in M(CO)4 (M = Ni, Pd, Pt), M(CO)5 (M = Fe, Ru, Os), and M(CO)6 (M = Cr, Mo, W) by a Quasirelativistic Density Functional Method , 1995 .

[81]  L. A. Duncanson,et al.  586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes , 1953 .

[82]  Hui Chen,et al.  The directive of the protein: how does cytochrome P450 select the mechanism of dopamine formation? , 2011, Journal of the American Chemical Society.

[83]  Gernot Frenking,et al.  Chemical bonding in transition metal carbene complexes , 2005 .

[84]  A. J. Downs,et al.  Photooxidation of matrix-isolated iron pentacarbonyl. II: Binary iron oxide reaction products and the overall reaction mechanism , 1992 .

[85]  C. Cummins,et al.  A terminal molybdenum carbide prepared by methylidyne deprotonation , 1997 .

[86]  J. Kampf,et al.  Two generalizable routes to terminal carbido complexes. , 2005, Journal of the American Chemical Society.

[87]  R. L. Dekock Preparation and identification of intermediate carbonyls of nickel and tantalum by matrix isolation , 1971 .

[88]  R. Perutz,et al.  Photochemistry of the Group VI hexacarbonyls in low-temperature matrices. II. Infrared spectra and structures of carbon-13 monoxide-enriched hexacarbonyls and pentacarbonyls of chromium, molybdenum, and tungsten , 1975 .

[89]  Qiang Xu Metal carbonyl cations: generation, characterization and catalytic application , 2002 .

[90]  K. Zamaraev,et al.  Similarities between Reactions of Methanol with MoxOy+ in the Gas Phase and over Real Catalysts , 1997 .

[91]  M. Hall,et al.  Tetrarhena-heterocycle from the palladium-catalyzed dimerization of Re2(CO)8(μ-SbPh2)(μ-H) exhibits an unusual host-guest behavior. , 2011, Journal of the American Chemical Society.

[92]  Yong Wang,et al.  P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. , 2010, Chemical reviews.