Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target

Dopaminergic (DA) neurons in the midbrain provide rich topographic innervation of the striatum and are central to learning and to generating actions. Despite the importance of this DA innervation, it remains unclear whether and how DA neurons are specialized on the basis of the location of their striatal target. Thus, we sought to compare the function of subpopulations of DA neurons that target distinct striatal subregions in the context of an instrumental reversal learning task. We identified key differences in the encoding of reward and choice in dopamine terminals in dorsal versus ventral striatum: DA terminals in ventral striatum responded more strongly to reward consumption and reward-predicting cues, whereas DA terminals in dorsomedial striatum responded more strongly to contralateral choices. In both cases the terminals encoded a reward prediction error. Our results suggest that the DA modulation of the striatum is spatially organized to support the specialized function of the targeted subregion.

[1]  T. Crow,et al.  Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats. , 1971, Experimental neurology.

[2]  J. Marshall,et al.  Movement disorders of aged rats: reversal by dopamine receptor stimulation. , 1979, Science.

[3]  M. Starr,et al.  Differential effects of dopamine D1 and D2 agonists and antagonists on velocity of movement, rearing and grooming in the mouse Implications for the roles of D1 and D2 receptors , 1986, Neuropharmacology.

[4]  V. B. Domesick Neuroanatomical Organization of Dopamine Neurons in the Ventral Tegmental Area a , 1988, Annals of the New York Academy of Sciences.

[5]  S. Haber,et al.  The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum , 1994, Neuroscience.

[6]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[7]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[8]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[9]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[10]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[11]  S. Ikemoto,et al.  The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking , 1999, Brain Research Reviews.

[12]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[13]  B. Hyland,et al.  Firing modes of midbrain dopamine cells in the freely moving rat , 2002, Neuroscience.

[14]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[15]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[16]  W. Pan,et al.  Dopamine Cells Respond to Predicted Events during Classical Conditioning: Evidence for Eligibility Traces in the Reward-Learning Network , 2005, The Journal of Neuroscience.

[17]  Karl J. Friston,et al.  Mixed-effects and fMRI studies , 2005, NeuroImage.

[18]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[19]  P. Glimcher,et al.  JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 2005, 84, 555–579 NUMBER 3(NOVEMBER) DYNAMIC RESPONSE-BY-RESPONSE MODELS OF MATCHING BEHAVIOR IN RHESUS MONKEYS , 2022 .

[20]  M. Roitman,et al.  Nucleus Accumbens Neurons Are Innately Tuned for Rewarding and Aversive Taste Stimuli, Encode Their Predictors, and Are Linked to Motor Output , 2005, Neuron.

[21]  B. Moghaddam,et al.  Rule Learning and Reward Contingency Are Associated with Dissociable Patterns of Dopamine Activation in the Rat Prefrontal Cortex, Nucleus Accumbens, and Dorsal Striatum , 2006, The Journal of Neuroscience.

[22]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[23]  E. Nestler,et al.  The Mesolimbic Dopamine Reward Circuit in Depression , 2006, Biological Psychiatry.

[24]  E. Vaadia,et al.  Midbrain dopamine neurons encode decisions for future action , 2006, Nature Neuroscience.

[25]  P. Dayan,et al.  Tonic dopamine: opportunity costs and the control of response vigor , 2007, Psychopharmacology.

[26]  B. Balleine,et al.  The Role of the Dorsal Striatum in Reward and Decision-Making , 2007, The Journal of Neuroscience.

[27]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[28]  M. Roesch,et al.  Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards , 2007, Nature Neuroscience.

[29]  R. Wightman,et al.  Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens , 2007, Nature Neuroscience.

[30]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[31]  P. Glimcher,et al.  Value Representations in the Primate Striatum during Matching Behavior , 2008, Neuron.

[32]  N. Daw,et al.  Human Reinforcement Learning Subdivides Structured Action Spaces by Learning Effector-Specific Values , 2009, The Journal of Neuroscience.

[33]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[34]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[35]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[36]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[37]  J. J. Cone,et al.  Primary food reward and reward‐predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum , 2011, The European journal of neuroscience.

[38]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[39]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[40]  B. Everitt,et al.  Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use , 2012, Proceedings of the National Academy of Sciences.

[41]  L. Wilbrecht,et al.  Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value , 2012, Nature Neuroscience.

[42]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[43]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[44]  Carlos Diuk,et al.  Hierarchical Learning Induces Two Simultaneous, But Separable, Prediction Errors in Human Basal Ganglia , 2013, The Journal of Neuroscience.

[45]  A. Graybiel,et al.  Prolonged Dopamine Signalling in Striatum Signals Proximity and Value of Distant Rewards , 2013, Nature.

[46]  P. Glimcher,et al.  Phasic Dopamine Release in the Rat Nucleus Accumbens Symmetrically Encodes a Reward Prediction Error Term , 2014, The Journal of Neuroscience.

[47]  S. Ikemoto,et al.  Similar Roles of Substantia Nigra and Ventral Tegmental Dopamine Neurons in Reward and Aversion , 2014, The Journal of Neuroscience.

[48]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[49]  Raag D. Airan,et al.  Natural Neural Projection Dynamics Underlying Social Behavior , 2014, Cell.

[50]  D. Bates,et al.  fitting linear mixed effects models using lme 4 arxiv , 2014 .

[51]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[52]  Liqun Luo,et al.  Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons , 2015, Neuron.

[53]  Vaughn L. Hetrick,et al.  Mesolimbic Dopamine Signals the Value of Work , 2015, Nature Neuroscience.