A computational method based on Hermite wavelets for two‐dimensional Sobolev and regularized long wave equations in fluids

[1]  Jianxian Qiu,et al.  An Adaptive Moving Mesh Finite Element Solution of the Regularized Long Wave Equation , 2016, J. Sci. Comput..

[2]  Alaattin Esen,et al.  A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation , 2015, Journal of Mathematical Chemistry.

[3]  İbrahim Çelik,et al.  Haar wavelet approximation for magnetohydrodynamic flow equations , 2013 .

[4]  Abdulkadir Dogan,et al.  A least‐squares finite element scheme for the RLW equation , 1996 .

[5]  Danping Yang,et al.  The Finite Difference Streamline Diffusion Methods for Sobolev Equations with Convection-Dominated Term , 2001, Appl. Math. Comput..

[6]  Danping Yang,et al.  A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations , 2008, Appl. Math. Comput..

[7]  Siraj-ul-Islam,et al.  A meshfree method for the numerical solution of the RLW equation , 2009 .

[8]  Hongxing Rui,et al.  A split least-squares characteristic mixed finite element method for Sobolev equations with convection term , 2009, Math. Comput. Simul..

[9]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[10]  Alaattin Esen,et al.  A finite difference solution of the regularized long-wave equation , 2006 .

[11]  Zhi Shi,et al.  Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method , 2012 .

[12]  Ülo Lepik Solving PDEs with the aid of two-dimensional Haar wavelets , 2011, Comput. Math. Appl..

[13]  Mehdi Dehghan,et al.  The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas , 2011, Comput. Phys. Commun..

[14]  A. K. Gupta,et al.  A numerical investigation of time-fractional modified Fornberg-Whitham equation for analyzing the behavior of water waves , 2015, Appl. Math. Comput..

[15]  A. K. Gupta,et al.  An investigation with Hermite Wavelets for accurate solution of Fractional Jaulent-Miodek equation associated with energy-dependent Schrödinger potential , 2015, Appl. Math. Comput..

[16]  Selçuk Kutluay,et al.  Application of a lumped Galerkin method to the regularized long wave equation , 2006, Appl. Math. Comput..

[17]  Abdulkadir Dogan,et al.  Numerical solution of RLW equation using linear finite elements within Galerkin's method , 2002 .

[18]  Hong Li,et al.  Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations , 2013 .

[19]  Tsuan Wu Ting,et al.  Certain non-steady flows of second-order fluids , 1963 .

[20]  Fengying Zhou,et al.  Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets , 2016 .

[21]  Mohammad Reza Hooshmandasl,et al.  A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type , 2014 .

[22]  Qiang Zhang,et al.  A Fully-Discrete Local Discontinuous Galerkin Method for Convection-Dominated Sobolev Equation , 2012, J. Sci. Comput..

[23]  Ülo Lepik,et al.  Numerical solution of differential equations using Haar wavelets , 2005, Math. Comput. Simul..

[24]  Ülo Lepik,et al.  Numerical solution of evolution equations by the Haar wavelet method , 2007, Appl. Math. Comput..

[25]  İdris Daǧ Least-squares quadratic B-spline finite element method for the regularised long wave equation , 2000 .

[26]  Qianshun Chang,et al.  Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary motion , 1991 .

[27]  Alaattin Esen,et al.  Numerical Solutions of Regularized Long Wave Equation By Haar Wavelet Method , 2016 .

[28]  Tongjun Sun,et al.  A space-time discontinuous Galerkin method for linear convection-dominated Sobolev equations , 2009, Appl. Math. Comput..

[30]  S. Zaki,et al.  Solitary waves of the splitted RLW equation , 2001 .

[31]  Guoqun Zhao,et al.  Weak Galerkin finite element methods for Sobolev equation , 2017, J. Comput. Appl. Math..

[32]  D. Peregrine Calculations of the development of an undular bore , 1966, Journal of Fluid Mechanics.

[33]  Dheeraj Bhardwaj,et al.  A computational method for regularized long wave equation , 2000 .

[34]  Weiming Cao,et al.  The Fourier pseudospectral method with a restrain operator for the RLW equation , 1988 .

[35]  Bo Tian,et al.  On the two-dimensional regularized long-wave equation in fluids and plasmas , 2003 .

[36]  Edward H. Twizell,et al.  A linearized implicit pseudo‐spectral method for some model equations: the regularized long wave equations , 2003 .

[37]  Mehdi Dehghan,et al.  The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate , 2015, J. Comput. Appl. Math..

[38]  Keisuke Araki,et al.  Interactions of two-dimensionally localized pulses of the regularized-long-wave equation , 1992 .

[39]  Qiang Zhang,et al.  Local Discontinuous Galerkin Finite Element Method and Error Estimates for One Class of Sobolev Equation , 2009, J. Sci. Comput..

[40]  Haiming Gu,et al.  Characteristic finite element methods for nonlinear Sobolev equations , 1999, Appl. Math. Comput..

[41]  Santanu Saha Ray,et al.  Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system , 2015, Appl. Math. Comput..

[42]  Esmail Babolian,et al.  Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration , 2007, Appl. Math. Comput..

[43]  C. Hwang,et al.  THE COMPUTATION OF WAVELET‐GALERKIN APPROXIMATION ON A BOUNDED INTERVAL , 1996 .

[44]  Mohsen Razzaghi,et al.  THE LEGENDRE WAVELETS OPERATIONAL MATRIX OF INTEGRATION , 2001 .