Optimally computing a shortest weakly visible line segment inside a simple polygon

A simple polygon is said to be weakly internally visible from a line segment lying inside it if every point on the boundary of the polygon is visible from some point on the line segment. In this paper, we present an optimal linear-time algorithm for the following problem: Given a simple polygon, either compute a shortest line segment from which the polygon is weakly internally visible, or report that the polygon is not weakly internally visible.The algorithm presented is conceptually simple. This paper also incorporates a significant improvement over the linear-time algorithm for the same problem, presented in a preliminary version [12], in the sense that it eliminates the need for using two complicated preprocessing tools: Chazelle's linear-time triangulation algorithm [7], and the algorithm for computing single-source-shortest-paths from a specified vertex in a triangulated polygon [16], thus making the algorithm practical.

[1]  Joseph O'Rourke Computational geometry column , 1988, SIGA.

[2]  Rolf Klein,et al.  The two guards problem , 1991, SCG '91.

[3]  Giri Narasimhan,et al.  Optimal linear-time algorithm for the shortest illuminating line segment in a polygon , 1994, SCG '94.

[4]  C. E. Veni Madhavan,et al.  Shortest Watchman Tours in Weak Visibility Polygons , 1993, CCCG.

[5]  Yan Ke,et al.  An efficient algorithm for link-distance problems , 1989, SCG '89.

[6]  D. T. Lee,et al.  An Optimal Algorithm for Finding the Kernel of a Polygon , 1979, JACM.

[7]  F. A. Valentine MINIMAL SETS OF VISIBILITY , 1953 .

[8]  D. T. Lee,et al.  Two-Guard Walkability of Simple Polygons , 1998, Int. J. Comput. Geom. Appl..

[9]  Robert E. Tarjan,et al.  Planar Point Location Using Persistent Search Trees a , 1989 .

[10]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[11]  Simeon Ntafos,et al.  Watchman routes under limited visibility , 1992 .

[12]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[13]  Ren-Hong Wang,et al.  On computational geometry , 2003 .

[14]  Asish Mukhopadhyay,et al.  Computing in Linear Time a Chord from Which a Simple Polygon is Weakly Internally Visible , 1995, ISAAC.

[15]  Andrzej Lingas,et al.  AnO(n logn) algorithm for computing the link center of a simple polygon , 1992, Discret. Comput. Geom..

[16]  Kyung-Yong Chwa,et al.  An Algorithm for Determining Visibility of a Simple Polygon from an Internal Line Segment , 1993, J. Algorithms.

[17]  David Avis,et al.  A Linear Algorithm for Computing the Visibility Polygon from a Point , 1981, J. Algorithms.

[18]  LYUDMIL G. ALEKSANDROV,et al.  An O(n log n) Algorithm for Finding a Shortest Central Link Segment , 2000, Int. J. Comput. Geom. Appl..

[19]  Giri Narasimhan,et al.  LR-visibility in Polygons , 1997, Comput. Geom..

[20]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[21]  Asish Mukhopadhyay,et al.  Computing a Shortest Weakly Externally Visible Line Segment for a Simple Polygon , 1999, Int. J. Comput. Geom. Appl..

[22]  Danny Ziyi Chen Optimally Computing the Shortest Weakly Visible Subedge of a Simple Polygon , 1993, ISAAC.

[23]  Svante Carlsson,et al.  Computing a Shortest Watchman Path in a Simple Polygon in Polynomial-Time , 1995, WADS.

[24]  M. Keil,et al.  A Simple Algorithm for Determining the Envelope of a Set of Lines , 1991, Inf. Process. Lett..

[25]  Subhash Suri,et al.  An Optimal Algorithm for Detecting Weak Visibility of a Polygon , 1990, IEEE Trans. Computers.

[26]  Godfried T. Toussaint,et al.  An Optimal Algorithm for Determining the Visibility of a Polygon from an Edge , 1981, IEEE Transactions on Computers.

[27]  Joseph O'Rourke Computational geometry column 18 , 1993, Int. J. Comput. Geom. Appl..

[28]  Giri Narasimhan,et al.  Finding All Weakly-Visible Chords of a Polygon in Linear Time (Extended Abstract) , 1994, SWAT.