Limiting the Number of Fitness Cases in Genetic Programming Using Statistics

Fitness evaluation is often a time consuming activity in genetic programming applications and it is thus of interest to find criteria that can help in reducing the time without compromising the quality of the results. We use well-known results in statistics and information theory to limit the number of fitness cases that are needed for reliable function reconstruction in genetic programming. By using two numerical examples, we show that the results agree with our theoretical predictions. Since our approach is problem-independent, it can be used together with techniques for choosing an efficient set of fitness cases.