Computer simulation of reflective volume grating holographic data storage.

The shift selectivity of a reflective-type spherical reference wave volume hologram is investigated using a nonparaxial numerical modeling based on a multiple-thin-layer implementation of a volume integral equation. The method can be easily parallelized on multiple computers. According to the results, the falloff of the diffraction efficiency due to the readout shift shows neither Bragg zeros nor oscillation with our parameter set. This agrees with our earlier study of smaller and transmissive holograms. Interhologram cross talk of shift-multiplexed holograms is also modeled using the same method, together with sparse modulation block coding and correlation decoding of data. Signal-to-noise ratio and raw bit error rate values are calculated.

[1]  S. Gallego,et al.  Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model. , 2005, Optics express.

[2]  B. Draine,et al.  Application of fast-Fourier-transform techniques to the discrete-dipole approximation. , 1991, Optics letters.

[3]  Atsushi Fukumoto,et al.  Simulation of Holographic Data Storage for the Optical Collinear System , 2006 .

[4]  Olivier J. F. Martin,et al.  Electromagnetic scattering in polarizable backgrounds , 1998 .

[5]  Paul Lagasse,et al.  Bidirectional beam propagation method , 1988 .

[6]  Sergei S. Orlov,et al.  Holographic shift multiplexing in thin volumetric media , 2003 .

[7]  Masud Mansuripur,et al.  Distribution of light at and near the focus of high-numerical-aperture objectives , 1986 .

[8]  P. Maák,et al.  Application of the fast-Fourier-transform-based volume integral equation method to model volume diffraction in shift-multiplexed holographic data storage. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Masud Mansuripur,et al.  Certain computational aspects of vector diffraction problems , 1989 .

[10]  Selectivity and tolerance calculations with half-cone-shaped reference beam in volume holographic storage , 2006 .

[11]  M. Feit,et al.  Light propagation in graded-index optical fibers. , 1978, Applied optics.

[12]  J. Sheridan,et al.  Adjusted intensity nonlocal diffusion model of photopolymer grating formation , 2002 .

[13]  Sergei Orlov,et al.  Volume holographic data storage , 2000, CACM.

[14]  Emoke Lorincz,et al.  Modeling of multilayer microholographic data storage. , 2007, Applied optics.

[15]  I. Betty,et al.  Stable and noniterative bidirectional beam propagation method , 2000, IEEE Photonics Technology Letters.

[16]  V. B. Markov,et al.  Shift selectivity of holograms with a reference speckle wave , 1988 .

[17]  Elias N. Glytsis,et al.  Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis , 2003 .

[18]  D Psaltis,et al.  Shift multiplexing with spherical reference waves. , 1996, Applied optics.

[19]  Emoke Lorincz,et al.  Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding , 2004 .

[20]  Lambertus Hesselink,et al.  High-transfer-rate high-capacity holographic disk data-storage system. , 2004, Applied optics.

[21]  D. Brady,et al.  Spherical beam holograms for spectroscopic applications: Modeling and implementation , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..