High-order ADI finite difference schemes for parabolic equations in the combination technique with application in finance

In this article we combine high-order (HO) finite difference discretisations with alternating direction implicit (ADI) schemes for parabolic partial differential equations with mixed derivatives in a sparse grid setting. In each implicit leg of the ADI schemes, we propose a high-order-compact (HOC) discretisation, such that only tridiagonal systems have to be solved. With the help of HO spatial discretisations and ADI schemes solutions with second order accuracy in time and fourth order accuracy in space can be computed. In order to reduce the number of involved grid points we use the combination technique to construct the so called sparse grid solution. The theoretical findings are illustrated by numerical examples with European basket options.

[1]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[2]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[3]  James Miles,et al.  High-order ADI scheme for option pricing in stochastic volatility models , 2017, J. Comput. Appl. Math..

[4]  Michael Günther,et al.  High-order ADI schemes for diffusion equations with mixed derivatives in the combination technique , 2016 .

[5]  K. J. in 't Hout,et al.  Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms , 2012 .

[6]  K. J. in’t Hout,et al.  Stability of the modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term , 2010, Math. Comput. Simul..

[7]  Christof Heuer,et al.  High-Order Compact Finite Difference Schemes for Option Pricing in Stochastic Volatility Models on Non-Uniform Grids , 2014, J. Comput. Appl. Math..

[8]  Jun Zhang,et al.  High order ADI method for solving unsteady convection-diffusion problems , 2004 .

[9]  Willem Hundsdorfer,et al.  Accuracy and stability of splitting with stabilizing corrections , 2002 .

[10]  Peter A. Forsyth,et al.  Convergence remedies for non-smooth payoffs in option pricing , 2003 .

[11]  Bruno Welfert,et al.  Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms , 2007 .

[12]  Graeme Fairweather,et al.  Improved forms of the alternating direction methods of Douglas, Peaceman, and Rachford for solving parabolic and elliptic equations , 1964 .

[13]  Bertram Düring,et al.  High-Order Compact Finite Difference Scheme for Option Pricing in Stochastic Volatility Models , 2010, J. Comput. Appl. Math..

[14]  G. Carey,et al.  High‐order compact scheme for the steady stream‐function vorticity equations , 1995 .

[15]  Michael Griebel,et al.  The efficient solution of fluid dynamics problems by the combination technique , 1995, Forschungsberichte, TU Munich.

[16]  J. J. Douglas Alternating direction methods for three space variables , 1962 .

[17]  Rüdiger U. Seydel Tools for Computational Finance (Universitext) , 2006 .

[18]  Murli M. Gupta,et al.  Convergence of Fourth Order Compact Difference Schemes for Three-Dimensional Convection-Diffusion Equations , 2007, SIAM J. Numer. Anal..

[19]  Bertram During,et al.  High-Order ADI Schemes for Convection-Diffusion Equations with Mixed Derivative Terms , 2014 .

[20]  Cornelis W. Oosterlee,et al.  On coordinate transformation and grid stretching for sparse grid pricing of basket options , 2008 .

[21]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[22]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[23]  P. L. T. Brian,et al.  A finite‐difference method of high‐order accuracy for the solution of three‐dimensional transient heat conduction problems , 1961 .

[24]  Olof B. Widlund,et al.  Smoothing of initial data and rates of convergence for parabolic difference equations , 1970 .

[25]  Jonas Persson,et al.  High-order adaptive space-discretizations for the Black-Scholes equation , 2006 .

[26]  Christoph Reisinger,et al.  Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben , 2004 .

[27]  Christof Heuer,et al.  High-Order Compact Schemes for Parabolic Problems with Mixed Derivatives in Multiple Space Dimensions , 2014, SIAM J. Numer. Anal..

[28]  Michael Günther,et al.  Error Splitting Preservation for High Order Finite Difference Schemes in the Combination Technique , 2017 .

[29]  Joke Blom,et al.  Time integration of the shallow water equations in spherical geometry , 2001 .

[30]  Bruno Welfert,et al.  Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms , 2009 .

[31]  Frank Cuypers Tools for Computational Finance , 2003 .

[32]  Christoph Reisinger,et al.  Analysis of linear difference schemes in the sparse grid combination technique , 2007, 0710.0491.

[33]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[34]  Tinne Haentjens,et al.  ADI finite difference schemes for the Heston-Hull-White PDE , 2011 .

[35]  Tinne Haentjens,et al.  Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation , 2012 .

[36]  L. Wahlbin,et al.  A Remark on Parabolic Smoothing and the Finite Element Method , 1980 .

[37]  Chittaranjan Mishra A new stability result for the modified Craig-Sneyd scheme applied to two-dimensional convection-diffusion equations with mixed derivatives , 2016, Appl. Math. Comput..

[38]  A. D. Sneyd,et al.  An alternating-direction implicit scheme for parabolic equations with mixed derivatives , 1988 .