Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide.

Biochemical network reconstructions have become popular tools in systems biology. Metabolicnetwork reconstructions are biochemically, genetically, and genomically (BiGG) structured databases of biochemical reactions and metabolites. They contain information such as exact reaction stoichiometry, reaction reversibility, and the relationships between genes, proteins, and reactions. Network reconstructions have been used extensively to study the phenotypic behavior of wild-type and mutant stains under a variety of conditions, linking genotypes with phenotypes. Such phenotypic simulations have allowed for the prediction of growth after genetic manipulations, prediction of growth phenotypes after adaptive evolution, and prediction of essential genes. Additionally, because network reconstructions are organism specific, they can be used to understand differences between organisms of species in a functional context.There are different types of reconstructions representing various types of biological networks (metabolic, regulatory, transcription/translation). This chapter serves as an introduction to metabolic and regulatory network reconstructions and models and gives a complete description of the core Escherichia coli metabolic model. This model can be analyzed in any computational format (such as MATLAB or Mathematica) based on the information given in this chapter. The core E. coli model is a small-scale model that can be used for educational purposes. It is meant to be used by senior undergraduate and first-year graduate students learning about constraint-based modeling and systems biology. This model has enough reactions and pathways to enable interesting and insightful calculations, but it is also simple enough that the results of such calculations can be understoodeasily.

[1]  H. Kornberg,et al.  Net formation of phosphoenolpyruvate from pyruvate by Escherichia coli. , 1965, Biochimica et biophysica acta.

[2]  R. Okinaka,et al.  Catabolite Repression and Pyruvate Metabolism in Escherichia coli , 1967, Journal of bacteriology.

[3]  D. Fraenkel,et al.  Genetic Mapping of Loci for Glucose-6-Phosphate Dehydrogenase, Gluconate-6-Phosphate Dehydrogenase, and Gluconate-6-Phosphate Dehydrase in Escherichia coli , 1968, Journal of bacteriology.

[4]  Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. , 1969, Biochimica et biophysica acta.

[5]  D. Fraenkel,et al.  Transketolase Mutants of Escherichia coli , 1969, Journal of bacteriology.

[6]  W. F. Burke,et al.  NADP+-specific isocitrate dehydrogenase of Escherichia coli. II. Subunit structure. , 1974, Biochimica et biophysica acta.

[7]  E. Hansen,et al.  Two routes for synthesis of phosphoenolpyruvate from C4-dicarboxylic acids in Escherichia coli. , 1974, Biochemical and biophysical research communications.

[8]  D. Fraenkel,et al.  Sugar Metabolism in Transketolase Mutants of Escherichia coli , 1974, Journal of bacteriology.

[9]  R. Cooper,et al.  Two ribose-5-phosphate isomerases from Escherichia coli K12: partial characterisation of the enzymes and consideration of their possible physiological roles. , 1975, European journal of biochemistry.

[10]  J. H. Collins,et al.  Reconstitution of the Escherichia coli pyruvate dehydrogenase complex. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Hansen,et al.  Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic. , 1975, Biochemical and biophysical research communications.

[12]  E. Silverstein,et al.  Escherichia coli acetate kinase mechanism studied by net initial rate, equilibrium, and independent isotopic exchange kinetics. , 1976, The Journal of biological chemistry.

[13]  F. Veronese,et al.  Isolation and properties of 6-phosphogluconate dehydrogenase from Escherichia coli. Some comparisons with the thermophilic enzyme from Bacillus stearothermophilus. , 1976, Biochemistry.

[14]  W. A. Bridger,et al.  Phosphoenolypyruvate synthetase of Escherichia coli: molecular weight, subunit composition, and identification of phosphohistidine in phosphoenzyme intermediate. , 1977, The Journal of biological chemistry.

[15]  D. Fraenkel,et al.  Pathways of NADPH formation in Escherichia coli. , 1977, The Journal of biological chemistry.

[16]  R N Perham,et al.  Novel kinetic and structural properties of the class-I D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes' strain). , 1978, The Biochemical journal.

[17]  Y. Arita,et al.  Studies on regulatory functions of malic enzymes. VI. Purification and molecular properties of NADP-linked malic enzyme from Escherichia coli W. , 1979, Journal of Biochemistry (Tokyo).

[18]  S. Rhee,et al.  Catalytic cycle of the biosynthetic reaction catalyzed by adenylylated glutamine synthetase from Escherichia coli. , 1982, The Journal of biological chemistry.

[19]  R. Cooper,et al.  Evidence for two dinstinct pyruvate kinase genes in Escherichia coli K‐12 , 1983 .

[20]  F. Daldal,et al.  Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12. , 1984, Gene.

[21]  F. Wittinghofer,et al.  Cloning and sequencing of the adenylate kinase gene (adk) of Escherichia coli. , 1985, Nucleic acids research.

[22]  G. Branlant,et al.  Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. , 1985, European journal of biochemistry.

[23]  E. Meléndez-Hevia,et al.  The game of the pentose phosphate cycle. , 1985, Journal of theoretical biology.

[24]  L. McAlister-Henn,et al.  Isolation and expression of the Escherichia coli gene encoding malate dehydrogenase , 1985, Journal of bacteriology.

[25]  P. Owen,et al.  The succinate dehydrogenase of Escherichia coli. Immunochemical resolution and biophysical characterization of a 4-subunit enzyme complex. , 1985, The Journal of biological chemistry.

[26]  S. Cole,et al.  Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. , 1985, Biochimica et biophysica acta.

[27]  C. Upton,et al.  The subunits of succinyl-coenzyme A synthetase--function and assembly. , 1987, Biochemical Society symposium.

[28]  E. Lin,et al.  arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Guest,et al.  Two biochemically distinct classes of fumarase in Escherichia coli. , 1988, Biochimica et biophysica acta.

[30]  E. F. Robertson,et al.  Escherichia coli isocitrate lyase: properties and comparisons. , 1988, Biochimica et biophysica acta.

[31]  D. Clark,et al.  The fermentation pathways of Escherichia coli. , 1989, FEMS microbiology reviews.

[32]  P. Evans,et al.  Crystal structure of unliganded phosphofructokinase from Escherichia coli. , 1989, Journal of molecular biology.

[33]  S. Baldwin,et al.  Cloning, sequence analysis and over-expression of the gene for the class II fructose 1,6-bisphosphate aldolase of Escherichia coli. , 1989, The Biochemical journal.

[34]  J. Guest,et al.  Nucleotide sequence of the FNR-regulated fumarase gene (fumB) of Escherichia coli K-12 , 1989, Journal of bacteriology.

[35]  T. Atlung,et al.  Cloning and characterization of the Escherichia coli phosphoglycerate kinase (pgk) gene. , 1989, Gene.

[36]  R. Perham,et al.  2‐Oxo Acid Dehydrogenase Multienzyme Complexes: Domains, Dynamics, and Design a , 1989, Annals of the New York Academy of Sciences.

[37]  B. Cain,et al.  Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. , 1989, The Journal of biological chemistry.

[38]  H. Muirhead,et al.  Isoenzymes of pyruvate kinase. , 1990, Biochemical Society transactions.

[39]  G. Sawers,et al.  A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. , 1990, FEMS microbiology reviews.

[40]  D. K. Willis,et al.  Copyright 0 1990 by the Genetics Society of America Physical Analysis of Spontaneous and Mutagen-Induced Mutants of Escherichia coli K-12 Expressing DNA Exonuclease VI11 Activity , 1989 .

[41]  Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12 , 1990, Journal of bacteriology.

[42]  C. Prodromou,et al.  The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). , 1991, Journal of general microbiology.

[43]  W. Boos,et al.  The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system , 1991, Journal of bacteriology.

[44]  G Perrière,et al.  Regulation of the acetate operon in Escherichia coli: purification and functional characterization of the IclR repressor. , 1991, The EMBO journal.

[45]  J. Knappe,et al.  Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. , 1992, The Journal of biological chemistry.

[46]  Cyclic AMP in prokaryotes. , 1992, Microbiological reviews.

[47]  B. Erni,et al.  The mannose transporter of Escherichia coli. Structure and function of the IIABMan subunit. , 1993, The Journal of biological chemistry.

[48]  B. Palsson,et al.  Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors. , 1993, Journal of theoretical biology.

[49]  G Sawers,et al.  Specific transcriptional requirements for positive regulation of the anaerobically inducible pfl operon by ArcA and FNR , 1993, Molecular microbiology.

[50]  S. Teshiba,et al.  Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12 , 1993, Journal of bacteriology.

[51]  B. Palsson,et al.  Metabolic Capabilities of Escherichia coli II. Optimal Growth Patterns , 1993 .

[52]  Jeffrey Green,et al.  Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors , 1994, Molecular microbiology.

[53]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[54]  D. Flint,et al.  Initial kinetic and mechanistic characterization of Escherichia coli fumarase A. , 1994, Archives of biochemistry and biophysics.

[55]  J. Badia,et al.  Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. , 1994, European journal of biochemistry.

[56]  S. Park,et al.  Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products , 1995, Journal of bacteriology.

[57]  L. Wu,et al.  A family of homologous substrate-binding proteins with a broad range of substrate specificity and dissimilar biological functions. , 1995, Biochimie.

[58]  Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains. , 1995 .

[59]  S. Park,et al.  Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate , 1996, Journal of bacteriology.

[60]  S. Grdadolnik,et al.  Solution structure of the IIB domain of the glucose transporter of Escherichia coli. , 1996, Biochemistry.

[61]  R. Gunsalus,et al.  Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli , 1996, Journal of bacteriology.

[62]  D. Laporte,et al.  Regulated expression of a repressor protein: FadR activates iclR , 1996, Journal of bacteriology.

[63]  M H Saier,et al.  Frur mediates catabolite activation of pyruvate kinase (pykF) gene expression in Escherichia coli , 1996, Journal of bacteriology.

[64]  E. Díaz,et al.  Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12 , 1997, Journal of bacteriology.

[65]  C. Tseng Regulation of fumarase (fumB) gene expression in Escherichia coli in response to oxygen, iron and heme availability: role of the arcA, fur, and hemA gene products. , 1997, FEMS microbiology letters.

[66]  S. Park,et al.  Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCDAB promoter , 1997, Journal of bacteriology.

[67]  E. Lin,et al.  Regulation of expression of the ethanol dehydrogenase gene (adhE) in Escherichia coli by catabolite repressor activator protein Cra , 1997, Journal of bacteriology.

[68]  E. Boye,et al.  Impaired growth of an Escherichia coli rpe mutant lacking ribulose-5-phosphate epimerase activity. , 1998, Biochimica et biophysica acta.

[69]  G. Sawers,et al.  A glycyl radical solution: oxygen‐dependent interconversion of pyruvate formate‐lyase , 1998, Molecular microbiology.

[70]  A. Fersht Structure and mechanism in protein science , 1998 .

[71]  J. Guest,et al.  Transcription and transcript processing in the sdhCDAB-sucABCD operon of Escherichia coli. , 1998, Microbiology.

[72]  M. Saier,et al.  Multiple mechanisms controlling carbon metabolism in bacteria. , 1998, Biotechnology and bioengineering.

[73]  J. Plumbridge Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS , 1998, Molecular microbiology.

[74]  A. Ashcroft,et al.  The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. , 1998, The Biochemical journal.

[75]  L. Camarena,et al.  Transcriptional repression of gdhA in Escherichia coli is mediated by the Nac protein. , 1998, FEMS microbiology letters.

[76]  A. Ishihama,et al.  FruR-mediated transcriptional activation at the ppsA promoter of Escherichia coli. , 1998, Journal of molecular biology.

[77]  Juan Aguilar,et al.  Cross-induction of glc and ace Operons ofEscherichia coli Attributable to Pathway Intersection , 1999, The Journal of Biological Chemistry.

[78]  D. Rees,et al.  Structure of the Escherichia coli fumarate reductase respiratory complex. , 1999, Science.

[79]  J. Guest,et al.  Inactivation and Regulation of the Aerobic C4-Dicarboxylate Transport (dctA) Gene ofEscherichia coli , 1999, Journal of bacteriology.

[80]  S. Tagawa,et al.  Electron transfer process in cytochrome bd-type ubiquinol oxidase from Escherichia coli revealed by pulse radiolysis. , 1999, Biochemistry.

[81]  M. F. White,et al.  The two analogous phosphoglycerate mutases of Escherichia coli , 1999, FEBS letters.

[82]  Overexpression of the Escherichia coli nuo-operon and isolation of the overproduced NADH:ubiquinone oxidoreductase (complex I). , 1999, Biochemistry.

[83]  T. Inada,et al.  Negative regulation of the pts operon by Mlc: mechanism underlying glucose induction in Escherichia coli , 1999, Genes to cells : devoted to molecular & cellular mechanisms.

[84]  J. Guest,et al.  Identification and Characterization of a Two-Component Sensor-Kinase and Response-Regulator System (DcuS-DcuR) Controlling Gene Expression in Response to C4-Dicarboxylates in Escherichia coli , 1999, Journal of bacteriology.

[85]  E. Lin,et al.  Regulation of Expression of the adhE Gene, Encoding Ethanol Oxidoreductase in Escherichia coli: Transcription from a Downstream Promoter and Regulation by Fnr and RpoS , 1999, Journal of bacteriology.

[86]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  S. Kustu,et al.  Phosphorylation-Induced Signal Propagation in the Response Regulator NtrC , 2000, Journal of bacteriology.

[88]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[89]  V. Thorsson,et al.  Discovery of regulatory interactions through perturbation: inference and experimental design. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[90]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[91]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[92]  D. Eisenberg,et al.  The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Evelyn Camon,et al.  The EMBL Nucleotide Sequence Database , 2000, Nucleic Acids Res..

[94]  J. Rydström,et al.  Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties. , 2000, Biochimica et biophysica acta.

[95]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[96]  B. Palsson,et al.  Regulation of gene expression in flux balance models of metabolism. , 2001, Journal of theoretical biology.

[97]  G. Sawers,et al.  A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon , 2001, Molecular microbiology.

[98]  S. Howitt,et al.  Characterization of PitA and PitB fromEscherichia coli , 2001, Journal of bacteriology.

[99]  G. Brayer,et al.  Comparative analysis of folding and substrate binding sites between regulated hexameric type II citrate synthases and unregulated dimeric type I enzymes. , 2001, Biochemistry.

[100]  D. Clark,et al.  Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli. , 2001, Microbiology.

[101]  B. Luisi,et al.  Crystal structure of the Escherichia coli RNA degradosome component enolase. , 2001, Journal of molecular biology.

[102]  Lincoln Stein,et al.  Genome annotation: from sequence to biology , 2001, Nature Reviews Genetics.

[103]  U. Völker,et al.  Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase. , 2002, European journal of biochemistry.

[104]  Peter D. Karp,et al.  Evaluation of computational metabolic-pathway predictions for Helicobacter pylori , 2002, Bioinform..

[105]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[106]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[107]  Y. Kai,et al.  Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. , 2003, Archives of biochemistry and biophysics.

[108]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[109]  C. Claudel-Renard,et al.  Enzyme-specific profiles for genome annotation: PRIAM. , 2003, Nucleic acids research.

[110]  S. Iwata,et al.  Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation , 2003, Science.

[111]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[112]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[113]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[114]  H. Mori,et al.  Responses of theCentral Metabolism in Escherichia coli to PhosphoglucoseIsomerase and Glucose-6-Phosphate DehydrogenaseKnockouts , 2003, Journal of bacteriology.

[115]  R. Alberty Thermodynamics of Biochemical Reactions , 2003 .

[116]  George M. Church,et al.  Filling gaps in a metabolic network using expression information , 2004, ISMB/ECCB.

[117]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[118]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[119]  U. Sauer,et al.  The Soluble and Membrane-bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli* , 2004, Journal of Biological Chemistry.

[120]  R. H. Geerse,et al.  Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase , 2004, Molecular and General Genetics MGG.

[121]  E. Pichersky,et al.  Nucleotide sequence of the triose phosphate isomerase gene of Escherichia coli , 2004, Molecular and General Genetics MGG.

[122]  D. Court,et al.  Identification of the Escherichia coli K-12 ybhE Gene as pgl, Encoding 6-Phosphogluconolactonase , 2004, Journal of bacteriology.

[123]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[124]  L. Prasad,et al.  Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. , 2004, Biochimica et biophysica acta.

[125]  Kara Dolinski,et al.  Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms , 2004, Nucleic Acids Res..

[126]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[127]  R. Tait,et al.  Isolation and characterization of the phosphoglucose isomerase gene from Escherichia coli , 1989, Molecular and General Genetics MGG.

[128]  C. Pál,et al.  Adaptive evolution of bacterial metabolic networks by horizontal gene transfer , 2005, Nature Genetics.

[129]  D. Vitkup,et al.  Predicting genes for orphan metabolic activities using phylogenetic profiles , 2006, Genome Biology.

[130]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[131]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[132]  Martin J. Lercher,et al.  Horizontal gene transfer depends on gene content of the host , 2005, ECCB/JBI.

[133]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[134]  Bernhard O Palsson,et al.  The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[135]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[136]  H. Fromm,et al.  Novel Allosteric Activation Site in Escherichia coli Fructose-1,6-bisphosphatase* , 2006, Journal of Biological Chemistry.

[137]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[138]  G. Phillips,et al.  Crystal structure of ADP/AMP complex of Escherichia coli adenylate kinase , 2005, Proteins.

[139]  S. Oliver,et al.  Chance and necessity in the evolution of minimal metabolic networks , 2006, Nature.

[140]  W. Inwood,et al.  A previously undescribed pathway for pyrimidine catabolism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes. , 2004, Nucleic acids research.

[142]  J. Rabinowitz,et al.  Kinetic flux profiling of nitrogen assimilation in Escherichia coli , 2006, Nature chemical biology.

[143]  Bernhard O. Palsson,et al.  Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems , 2006, PLoS Comput. Biol..

[144]  John Gould,et al.  Toward the automated generation of genome-scale metabolic networks in the SEED , 2007, BMC Bioinformatics.

[145]  T. Ideker,et al.  Supporting Online Material for A Systems Approach to Mapping DNA Damage Response Pathways , 2006 .

[146]  Christian L. Barrett,et al.  Systems biology as a foundation for genome-scale synthetic biology. , 2006, Current opinion in biotechnology.

[147]  Byung-Kwan Cho,et al.  Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. , 2006, Microbiology.

[148]  Bernhard O. Palsson,et al.  Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles , 2006, PLoS Comput. Biol..

[149]  Tae Hoon Kim,et al.  Genome-wide analysis of protein-DNA interactions. , 2006, Annual review of genomics and human genetics.

[150]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[151]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[152]  A. Osterman A hidden metabolic pathway exposed. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[153]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[154]  Monica Riley,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[155]  Markus J. Herrgård,et al.  Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. , 2006, Genome research.

[156]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[157]  Peter D. Karp,et al.  Multidimensional annotation of the Escherichia coli K-12 genome , 2007, Nucleic acids research.

[158]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[159]  Sanjay Jain,et al.  The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response , 2007 .

[160]  Kevin Struhl,et al.  Genomic analysis of protein–DNA interactions in bacteria: insights into transcription and chromosome organization , 2007, Molecular microbiology.

[161]  Bernhard O. Palsson,et al.  Metabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli , 2007, PLoS Comput. Biol..

[162]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[163]  S. Busby,et al.  Transcription factor distribution in Escherichia coli: studies with FNR protein , 2006, Nucleic acids research.

[164]  Ian T. Paulsen,et al.  TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels , 2006, Nucleic Acids Res..

[165]  T. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2006, Nucleic Acids Res..

[166]  Patrick J. Killion,et al.  Genetic reconstruction of a functional transcriptional regulatory network , 2007, Nature Genetics.

[167]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[168]  S. Lee,et al.  Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation , 2007, Proceedings of the National Academy of Sciences.

[169]  Joan L. Slonczewski,et al.  pH of the Cytoplasm and Periplasm of Escherichia coli: Rapid Measurement by Green Fluorescent Protein Fluorimetry , 2007, Journal of bacteriology.

[170]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[171]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[172]  Akira Ishihama,et al.  The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions , 2008, Nucleic acids research.

[173]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[174]  B. Palsson,et al.  Genomewide identification of protein binding locations using chromatin immunoprecipitation coupled with microarray. , 2008, Methods in molecular biology.

[175]  Christian L. Barrett,et al.  Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli , 2008, Proceedings of the National Academy of Sciences.

[176]  Byung-Kwan Cho,et al.  Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. , 2008, Genome research.

[177]  Ronan M. T. Fleming,et al.  Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization , 2009, PLoS Comput. Biol..

[178]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[179]  Antje Chang,et al.  BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 , 2008, Nucleic Acids Res..

[180]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[181]  Bernhard O. Palsson,et al.  Functional States of the Genome-Scale Escherichia Coli Transcriptional Regulatory System , 2009, PLoS Comput. Biol..

[182]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[183]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.