Optimal control on special Euclidean group via natural gradient algorithm

Considering the optimal control problem about the control system of the special Euclidean group whose output only depends on its input is meaningful in practical applications. The optimal control considered here is described as the output matrix is as close as possible to the target matrix by adjusting the system input. The geodesic distance is adopted as the measure of the difference between the output matrix and the target matrix, and the trajectory of the control input obtained in the process is achieved. Furthermore, some numerical simulations are shown to illustrate our outcomes based on the natural gradient descent algorithm for optimizing the control system of the special Euclidean group.创新点本文借助于自然梯度算法研究特殊欧几里德群的最优控制问题。这一控制系统的输出仅仅与控制输入有关。具体来说, 文中考虑的特殊欧几里德群上的最优控制问题为: 通过调节系统的输入, 使得系统的输出矩阵尽可能的接近目标矩阵, 输出矩阵与目标矩阵的差异用相应矩阵流形的测地距离来描述, 同时, 在控制过程中, 可以得到系统输入的控制轨线。在文章的最后, 利用数值模拟进一步说明文中利用自然梯度算法来解决特殊欧几里德群的最优控制问题的可行性和有效性。

[1]  Shun-ichi Amari,et al.  Why natural gradient? , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[2]  F. Barbaresco Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.

[3]  Michael I. Miller,et al.  Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Hong Wang,et al.  Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability , 1999, IEEE Trans. Autom. Control..

[5]  Todd K. Moon,et al.  A Simplified Natural Gradient Learning Algorithm , 2011, Adv. Artif. Neural Syst..

[6]  Salah Sukkarieh,et al.  An Efficient Path Planning and Control Algorithm for RUAV’s in Unknown and Cluttered Environments , 2010, J. Intell. Robotic Syst..

[7]  Jerrold E. Marsden,et al.  Optimal Control and Geodesics on Quadratic Matrix Lie Groups , 2008, Found. Comput. Math..

[8]  Toshihisa Tanaka,et al.  An Algorithm to Compute Averages on Matrix Lie Groups , 2009, IEEE Transactions on Signal Processing.

[9]  Vijay Kumar,et al.  On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..

[10]  Xian-Da Zhang,et al.  Matrix Analysis and Applications , 2017 .

[11]  Aurobinda Routray,et al.  A constrained sequential algorithm for source separation in a non-stationary environment using natural gradient , 2011, 2011 IEEE Recent Advances in Intelligent Computational Systems.

[12]  Jürgen Jost,et al.  Riemannian Geometry and Geometric Analysis, 5th Edition , 2008 .

[13]  H. Wang,et al.  Control of conditional output probability density functions for general nonlinear and non-Gaussian dynamic stochastic systems , 2003 .

[14]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[15]  Zhenning Zhang,et al.  Natural gradient‐projection algorithm for distribution control , 2009 .

[16]  Shlomo Dubnov,et al.  On the Information Geometry of Audio Streams With Applications to Similarity Computing , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[17]  Linyu Peng,et al.  Natural gradient algorithm for stochastic distribution systems with output feedback , 2013 .

[18]  Luca De Cicco,et al.  A Mathematical Model of the Skype VoIP Congestion Control Algorithm , 2008, IEEE Transactions on Automatic Control.

[19]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[20]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[21]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[22]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[23]  Hong Wang Minimum entropy control of non-Gaussian dynamic stochastic systems , 2002, IEEE Trans. Autom. Control..

[24]  Xiaomin Duan,et al.  A natural gradient descent algorithm for the solution of discrete algebraic Lyapunov equations based on the geodesic distance , 2013, Appl. Math. Comput..

[25]  Xiaomin Duan,et al.  Riemannian Means on Special Euclidean Group and Unipotent Matrices Group , 2013, TheScientificWorldJournal.