Canonical form of a nonlinear monetary system

This paper addresses an autonomous system of quadratic ordinary differential equations, which describes a monetary system involving interest rate, investment demand and price index. The canonical form of this system is derived, which is dependent on a single parameter. On this basis, it is proved that this system is not smoothly equivalent to the generalized Lorenz canonical form.

[1]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[2]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[3]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[4]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[5]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[6]  Julien Clinton Sprott,et al.  Algebraically Simple Chaotic Flows , 2000 .

[7]  Guanrong Chen,et al.  A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.

[8]  Guanrong Chen,et al.  On the generalized Lorenz canonical form , 2005 .

[9]  Guanrong Chen,et al.  Classification of Chaos in 3-d Autonomous Quadratic Systems-I: Basic Framework and Methods , 2006, Int. J. Bifurc. Chaos.

[10]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Guanrong Chen,et al.  Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.

[12]  A. Rucklidge Chaos in models of double convection , 1992, Journal of Fluid Mechanics.

[13]  O. Rössler An equation for continuous chaos , 1976 .

[14]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[15]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[16]  T. Shimizu,et al.  On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model , 1980 .

[17]  Ma Junhai,et al.  Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I) , 2001 .

[18]  T. Klapwijk,et al.  Phase-slip centers in superconducting aluminium , 1976 .

[19]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[20]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.