Munc13 C2B-Domain – an Activity-Dependent Ca2+-Regulator of Synaptic Exocytosis

[1]  Alcino J. Silva,et al.  Calmodulin-Kinases: Modulators of Neuronal Development and Plasticity , 2009, Neuron.

[2]  Christian Rosenmund,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to 12 Tables S1 and S2 References and Notes Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion , 2022 .

[3]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[4]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[5]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[6]  M. Verhage,et al.  Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity , 2007, Neuron.

[7]  Zhiping P. Pang,et al.  Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation , 2007, Journal of Neuroscience Methods.

[8]  Christian Rosenmund,et al.  Munc13-1 C1 Domain Activation Lowers the Energy Barrier for Synaptic Vesicle Fusion , 2007, The Journal of Neuroscience.

[9]  T. Südhof,et al.  A Gain-of-Function Mutation in Synaptotagmin-1 Reveals a Critical Role of Ca2+-Dependent Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Complex Binding in Synaptic Exocytosis , 2006, The Journal of Neuroscience.

[10]  S. Corbalán-García,et al.  Protein kinase C regulatory domains: the art of decoding many different signals in membranes. , 2006, Biochimica et biophysica acta.

[11]  J. Kaplan,et al.  UNC-13 Interaction with Syntaxin Is Required for Synaptic Transmission , 2005, Current Biology.

[12]  U. Matti,et al.  Identification of the Minimal Protein Domain Required for Priming Activity of Munc13-1 , 2005, Current Biology.

[13]  T. Südhof,et al.  Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Grishin,et al.  A minimal domain responsible for Munc13 activity , 2005, Nature Structural &Molecular Biology.

[15]  Ralf Schneggenburger,et al.  A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? , 2005, The EMBO journal.

[16]  D. Storm,et al.  The role of calmodulin as a signal integrator for synaptic plasticity , 2005, Nature Reviews Neuroscience.

[17]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .

[18]  Christian Rosenmund,et al.  Calmodulin and Munc13 Form a Ca2+ Sensor/Effector Complex that Controls Short-Term Synaptic Plasticity , 2004, Cell.

[19]  T. Südhof,et al.  A Complete Genetic Analysis of Neuronal Rab3 Function , 2004, The Journal of Neuroscience.

[20]  A. Fischer,et al.  Munc13-4 Is Essential for Cytolytic Granules Fusion and Is Mutated in a Form of Familial Hemophagocytic Lymphohistiocytosis (FHL3) , 2003, Cell.

[21]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[22]  T. Südhof,et al.  Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells , 2002, Nature Neuroscience.

[23]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Christian Rosenmund,et al.  The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons , 2002, The Journal of physiology.

[25]  T. Südhof,et al.  Role of electrostatic and hydrophobic interactions in Ca(2+)-dependent phospholipid binding by the C(2)A-domain from synaptotagmin I. , 2002, Diabetes.

[26]  Nils Brose,et al.  Differential Control of Vesicle Priming and Short-Term Plasticity by Munc13 Isoforms , 2002, Neuron.

[27]  Thomas C. Südhof,et al.  RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone , 2002, Nature.

[28]  Thomas C. Südhof,et al.  β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs , 2002, Cell.

[29]  E. Neher,et al.  Calmodulin Mediates Rapid Recruitment of Fast-Releasing Synaptic Vesicles at a Calyx-Type Synapse , 2001, Neuron.

[30]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[31]  P. Camilli,et al.  PIP Kinase Iγ Is the Major PI(4,5)P2 Synthesizing Enzyme at the Synapse , 2001, Neuron.

[32]  V S Lamzin,et al.  ARP/wARP and molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[33]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[34]  Nils Brose,et al.  Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming , 2001, Neuron.

[35]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[36]  Sun Joo Park,et al.  Phosphatidylinositol 4-Phosphate 5-Kinase Type I Is Regulated through Phosphorylation Response by Extracellular Stimuli* , 2001, The Journal of Biological Chemistry.

[37]  T. Südhof,et al.  The Cerebellum-Specific Munc13 Isoform Munc13-3 Regulates Cerebellar Synaptic Transmission and Motor Learning in Mice , 2001, The Journal of Neuroscience.

[38]  K. Hofmann,et al.  Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. , 2000, The Biochemical journal.

[39]  T. Takenawa,et al.  Autophosphorylation of Type I Phosphatidylinositol Phosphate Kinase Regulates Its Lipid Kinase Activity* , 2000, The Journal of Biological Chemistry.

[40]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[41]  Scott T. Wong,et al.  Ca2+/calmodulin binds to and modulates P/Q-type calcium channels , 1999, Nature.

[42]  K. Deisseroth,et al.  Calmodulin supports both inactivation and facilitation of L-type calcium channels , 1999, Nature.

[43]  T. Südhof,et al.  Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? , 1998, Biochemistry.

[44]  Y. Nakamura,et al.  Cloning and characterization of BAP3 (BAI-associated protein 3), a C2 domain-containing protein that interacts with BAI1. , 1998, Biochemical and biophysical research communications.

[45]  T. Südhof,et al.  Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. , 1998, Biochemistry.

[46]  T. Südhof,et al.  Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2‐domain? , 1998, The EMBO journal.

[47]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[48]  E. Chapman,et al.  Direct Interaction of a Ca2+-binding Loop of Synaptotagmin with Lipid Bilayers* , 1998, The Journal of Biological Chemistry.

[49]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[50]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[51]  T. Südhof,et al.  Bipartite Ca2+-Binding Motif in C2 Domains of Synaptotagmin and Protein Kinase C , 1996, Science.

[52]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[53]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[54]  T. Südhof,et al.  Mammalian Homologues of Caenorhabditis elegans unc-13 Gene Define Novel Family of C2-domain Proteins (*) , 1995, The Journal of Biological Chemistry.

[55]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[56]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[57]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[58]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[59]  Alcino J. Silva,et al.  The α-Ca2+/calmodulin kinase II: A bidirectional modulator of presynaptic plasticity , 1995, Neuron.

[60]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[61]  E. Kandel,et al.  cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase , 1994, Cell.

[62]  R. Nicoll,et al.  Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. , 1994, Science.

[63]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[64]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[65]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[66]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[67]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[68]  D. Eberhard,et al.  Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal chromaffin cells , 1991, Cellular and Molecular Neurobiology.

[69]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[70]  P. Greengard,et al.  Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers , 1989, The Journal of cell biology.

[71]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[72]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[73]  T. Südhof,et al.  C 2-domains , Structure and Function of a Universal Ca 2 1-binding Domain * , 1998 .

[74]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[75]  Scott T. Wong,et al.  Ca 2 + / calmodulin binds to andmodulates P / Q-typecalciumchannels , 2022 .