Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology

[1]  B. Strooper,et al.  Noncoding RNAs in neurodegeneration , 2017, Nature Reviews Neuroscience.

[2]  Eckart Meese,et al.  The miRNome of Alzheimer's disease: consistent downregulation of the miR-132/212 cluster , 2017, Neurobiology of Aging.

[3]  B. de Strooper,et al.  miR‐132 loss de‐represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain , 2016, EMBO molecular medicine.

[4]  G. Halliday,et al.  MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease , 2016, Scientific Reports.

[5]  Hu Li,et al.  Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. , 2016, Cell reports.

[6]  A. Keller,et al.  Distribution of miRNA expression across human tissues , 2016, Nucleic acids research.

[7]  D. Standaert,et al.  microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease , 2016, The Journal of Neuroscience.

[8]  Chuen-Mao Yang,et al.  NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review , 2015, Front. Mol. Neurosci..

[9]  Sebastian Munck,et al.  Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer’s disease mouse models , 2015, Science Translational Medicine.

[10]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[11]  Jun Zhu,et al.  miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement , 2015, Nature Communications.

[12]  Zheng Li,et al.  miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1 , 2015, The Journal of cell biology.

[13]  F. Fontana,et al.  A network of RNA and protein interactions in Fronto Temporal Dementia , 2015, Front. Mol. Neurosci..

[14]  R. D'Hooge,et al.  Emotional disorders in adult mice heterozygous for the transcription factor Phox2b , 2015, Physiology & Behavior.

[15]  R. D'Hooge,et al.  Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice , 2015, Neurobiology of Disease.

[16]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[17]  N. Pochet,et al.  Targeting miR‐155 restores abnormal microglia and attenuates disease in SOD1 mice , 2015, Annals of neurology.

[18]  A. L. Cardoso,et al.  Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model. , 2014, Human molecular genetics.

[19]  B. Strooper,et al.  Variance in the identification of microRNAs deregulated in Alzheimer's disease and possible role of lincRNAs in the pathology: The need of larger datasets , 2014, Ageing Research Reviews.

[20]  Eva Benito,et al.  MicroRNA‐125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease , 2014, The EMBO journal.

[21]  F. Schmitt,et al.  Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models , 2014, Front. Genet..

[22]  Danni Yu,et al.  miR-191 and miR-135 are required for long-lasting spine remodeling associated with synaptic long term depression , 2014, Nature Communications.

[23]  A. Mahadevan,et al.  MicroRNA 155 Regulates Japanese Encephalitis Virus-Induced Inflammatory Response by Targeting Src Homology 2-Containing Inositol Phosphatase 1 , 2014, Journal of Virology.

[24]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[25]  Timothy A. Miller,et al.  Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. , 2013, Human molecular genetics.

[26]  Aikaterini S. Papadopoulou,et al.  Alteration of the microRNA network during the progression of Alzheimer's disease , 2013, EMBO molecular medicine.

[27]  H. Fox,et al.  Up‐regulation of microRNA‐142 in simian immunodeficiency virus encephalitis leads to repression of sirtuin1 , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[28]  Sebastian Munck,et al.  β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease , 2013, Nature Medicine.

[29]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[30]  F. Yin,et al.  Expressions of Tumor Necrosis Factor Alpha and MicroRNA-155 in Immature Rat Model of Status Epilepticus and Children with Mesial Temporal Lobe Epilepsy , 2013, Journal of Molecular Neuroscience.

[31]  S. Lipton,et al.  Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction via modulation of glutamate receptor recycling in Down syndrome , 2013, Nature Medicine.

[32]  Gabor T. Marth,et al.  Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression , 2013, Bioinform..

[33]  E. Abraham,et al.  MicroRNAs in immune response and macrophage polarization. , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[34]  C. Dieterich,et al.  FLEXBAR—Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms , 2012, Biology.

[35]  R. D'Hooge,et al.  LPA5 receptor plays a role in pain sensitivity, emotional exploration and reversal learning , 2012, Genes, brain, and behavior.

[36]  Z. Bashir,et al.  MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex , 2012, The European journal of neuroscience.

[37]  W. Lukiw,et al.  Spreading of Alzheimer's disease inflammatory signaling through soluble micro‐RNA , 2012, Neuroreport.

[38]  A. Blokland,et al.  Object recognition testing: Methodological considerations on exploration and discrimination measures , 2012, Behavioural Brain Research.

[39]  K. Jellinger,et al.  Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature , 2012, Journal of neuropathology and experimental neurology.

[40]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[41]  W. Lukiw,et al.  miRNA-155 upregulation and complement factor H deficits in Down’s syndrome , 2012, Neuroreport.

[42]  W. Lukiw,et al.  Regulation of Complement Factor H (CFH) by Multiple miRNAs in Alzheimer’s Disease (AD) Brain , 2012, Molecular Neurobiology.

[43]  P. Falkai,et al.  microRNA‐34c is a novel target to treat dementias , 2011, The EMBO journal.

[44]  R. D'Hooge,et al.  Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice , 2011, Brain Research Bulletin.

[45]  Wei Li,et al.  MicroRNA regulation of homeostatic synaptic plasticity , 2011, Proceedings of the National Academy of Sciences.

[46]  R. D'Hooge,et al.  Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission , 2011, Neurobiology of Learning and Memory.

[47]  Peter T. Nelson,et al.  Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter , 2011, Acta Neuropathologica.

[48]  J. Cui,et al.  Increased expression of miRNA-146a in Alzheimer's disease transgenic mouse models , 2011, Neuroscience Letters.

[49]  B. de Strooper,et al.  Dysregulated microRNAs in neurodegenerative disorders. , 2010, Seminars in cell & developmental biology.

[50]  K. Khalili,et al.  CCL8/MCP‐2 is a target for mir‐146a in HIV‐1‐infected human microglial cells , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  M. Hollenberg,et al.  MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase‐6 regulates astrocyte survival , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[52]  J. C. Baayen,et al.  Expression pattern of miR‐146a, an inflammation‐associated microRNA, in experimental and human temporal lobe epilepsy , 2010, The European journal of neuroscience.

[53]  H. Lassmann,et al.  MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. , 2009, Brain : a journal of neurology.

[54]  G. Schratt microRNAs at the synapse , 2009, Nature Reviews Neuroscience.

[55]  Walter J. Lukiw,et al.  Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer's disease temporal lobe neocortex , 2009, Neuroscience Letters.

[56]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[57]  N. Sonenberg,et al.  Translational Control of Long-Lasting Synaptic Plasticity and Memory , 2009, Neuron.

[58]  H. Braak,et al.  Neuropathology and Cognitive Impairment in Alzheimer Disease: A Complex but Coherent Relationship , 2009, Journal of neuropathology and experimental neurology.

[59]  Walter J. Lukiw,et al.  An NF-κB-sensitive Micro RNA-146a-mediated Inflammatory Circuit in Alzheimer Disease and in Stressed Human Brain Cells* , 2008, Journal of Biological Chemistry.

[60]  Eugene Berezikov,et al.  Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification , 2007, Nature Protocols.

[61]  D. Jong,et al.  Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma , 2007, Oncogene.

[62]  Hartwig Wolburg,et al.  Aβ42‐driven cerebral amyloidosis in transgenic mice reveals early and robust pathology , 2006, EMBO reports.

[63]  D. Baltimore,et al.  NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[64]  L. Buée,et al.  P1–062: Alzheimer's disease–like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits , 2006, The American journal of pathology.

[65]  Xiaohong Zhou,et al.  The proline-rich domain and the microtubule binding domain of protein tau acting as RNA binding domains. , 2006, Protein and peptide letters.

[66]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[67]  E. Mandelkow,et al.  RNA stimulates aggregation of microtubule‐associated protein tau into Alzheimer‐like paired helical filaments , 1996, FEBS letters.

[68]  H. Braak,et al.  Staging of alzheimer's disease-related neurofibrillary changes , 1995, Neurobiology of Aging.

[69]  R. D'Hooge,et al.  Amyloid and tau neuropathology differentially affect prefrontal synaptic plasticity and cognitive performance in mouse models of Alzheimer's disease. , 2013, Journal of Alzheimer's disease : JAD.

[70]  R. D'Hooge,et al.  Progressive age-related cognitive decline in tau mice. , 2013, Journal of Alzheimer's disease : JAD.

[71]  A. Roses,et al.  Identification of miRNA Changes in Alzheimer's Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways , 2008 .