Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

[1]  Zhixian Gao,et al.  Ni/Ln2Zr2O7 (Ln = La, Pr, Sm and Y) catalysts for methane steam reforming: the effects of A site replacement , 2017 .

[2]  B. Ouyang,et al.  Predictions of thermal expansion coefficients of rare-earth zirconate pyrochlores: A quasi-harmonic approximation based on stable phonon modes , 2016 .

[3]  Sushil Kumar,et al.  Synthesis, X-ray Rietveld analysis, infrared and Mössbauer spectroscopy of R2FeSbO7 (R3+ = Y, Dy, Gd, Bi) pyrochlore solid solution , 2016 .

[4]  N. Casati,et al.  Magnetic structure and crystal-field states of the pyrochlore antiferromagnetNd2Zr2O7 , 2015, 1511.02749.

[5]  S. Petit,et al.  Fluctuations and All-In-All-Out Ordering in Dipole-Octupole Nd(2)Zr(2)O(7). , 2015, Physical review letters.

[6]  B. Woodfield,et al.  Development of a Debye heat capacity model for vibrational modes with a gap in the density of states , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  B. Ouyang,et al.  The Role of Low-lying Optical Phonons in Lattice Thermal Conductance of Rare-earth Pyrochlores: A First-principle Study , 2015, 1503.03875.

[8]  A. Navrotsky,et al.  Combined computational and experimental investigation of the refractory properties of La2Zr2O7 , 2015 .

[9]  M. Lance,et al.  Structural and crystal chemical properties of rare-earth titanate pyrochlores , 2014 .

[10]  Aneesh George,et al.  Preparation, Characterization, and Ionic Transport Properties of Nanoscale Ln2Zr2O7 (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb) Energy Materials , 2014, Journal of Electronic Materials.

[11]  M. Blackford,et al.  Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis , 2013 .

[12]  M. Blackford,et al.  A Novel Chemical Route to Prepare La2Zr2O7 Pyrochlore , 2013 .

[13]  H. C. Gupta,et al.  First principles study of dielectric and vibrational properties of pyrochlore hafnates , 2012 .

[14]  H. C. Gupta,et al.  First principles study of zone centre phonons in rare-earth pyrochlore titanates, RE2Ti2O7 (RE = Gd, Dy, Ho, Er, Lu; Y) , 2012 .

[15]  M. Gingras,et al.  Magnetic Pyrochlore Oxides , 2009, 0906.3661.

[16]  H. C. Gupta,et al.  A lattice dynamical investigation of the Raman and the infrared frequencies of the Dy2Ti2O7 pyrochlore spin ice compound , 2009 .

[17]  M. Ma̧czka,et al.  Temperature-dependent studies of the geometrically frustrated pyrochlores Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 , 2009 .

[18]  Fu-chi Wang,et al.  Thermal conductivity of (Sm1–xLax)2Zr2O7 (x=0, 0.25, 0.5, 0.75 and 1) oxides for advanced thermal barrier coatings , 2009 .

[19]  Michel B. Johnson,et al.  Thermal properties of the pyrochlore, Y2Ti2O7 , 2009 .

[20]  M. Zhang,et al.  Thermal transport by lattice excitations in hexagonal rare-earth manganites , 2008 .

[21]  Xin Wang,et al.  Preparation and characterization of Ln2Zr2O7 (Ln = La and Nd) nanocrystals and their photocatalytic properties , 2008 .

[22]  H. Yamamura,et al.  Relationship between oxide-ion conductivity and dielectric relaxation in the Ln2Zr2O7 system having pyrochore-type compositions (Ln=Yb, Y, Gd, Eu, Sm, Nd, La) , 2008 .

[23]  S. Saha,et al.  Manifestation of geometric frustration on magnetic and thermodynamic properties of the pyrochlores Sm 2 X 2 O 7 (X=Ti,Zr) , 2007, 0712.3061.

[24]  A. K. Tyagi,et al.  Order–disorder transition in Nd2−yGdyZr2O7 pyrochlore solid solution: An X-ray diffraction and Raman spectroscopic study , 2007 .

[25]  W. Pan,et al.  Thermal Expansion and Defect Chemistry of MgO-Doped Sm2Zr2O7 , 2007 .

[26]  J. S. Lee,et al.  Phonon dynamics of the geometrically frustrated pyrochloreY2Ru2O7investigated by Raman spectroscopy , 2006 .

[27]  Xu Qiang,et al.  Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings , 2005 .

[28]  J. S. Lee,et al.  Strong spin-phonon coupling in the geometrically frustrated pyrochlore Y2Ru2O7 , 2004 .

[29]  J. Somers,et al.  Zirconate pyrochlore as a transmutation target: thermal behaviour and radiation resistance against fission fragment impact , 2003 .

[30]  W. Weber,et al.  Atomistic modeling of displacement cascades in La 2 Zr 2 O 7 pyrochlore , 2003 .

[31]  H. C. Gupta,et al.  Vibrational spectra and force field calculation of A2Mn2O7 (A = Y, Dy, Er, Yb) pyrochlores , 2003 .

[32]  K. Eberman,et al.  Order–disorder transformations induced by composition and temperature change in (SczYb1−z)2Ti2O7 pyrochlores, prospective fuel cell materials , 2002 .

[33]  S. Conradson,et al.  Spectroscopic Investigations of the Structural Phase Transition in Gd2(Ti1-yZry)2O7 Pyrochlores , 2002 .

[34]  H. C. Gupta,et al.  A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Hf2O7 pyrochlores , 2002 .

[35]  H. C. Gupta,et al.  Lattice dynamic investigation of the zone center wavenumbers of the cubic A2Ti2O7 pyrochlores , 2001 .

[36]  G. White,et al.  Heat Capacity and Thermal Expansion at Low Temperatures , 1999 .

[37]  F. Janssen,et al.  The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 from 4 to 1000 k , 1997 .

[38]  Y. Kubo,et al.  Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure , 1996, Nature.

[39]  Harry L. Tuller,et al.  Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds , 1992 .

[40]  G. Grimvall Thermophysical properties of materials , 1986 .

[41]  E. Husson,et al.  Comparison of the force field in various pyrochlore families. I. The A2B2O7 oxides , 1983 .

[42]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[43]  R. Mccauley Infrared-absorption characteristics of the pyrochlore structure* , 1973 .

[44]  W. G. Fateley Infrared and Raman selection rules for molecular and lattice vibrations : the correlation method , 1972 .

[45]  M. Tsuboi,et al.  OPTICALLY ACTIVE LATTICE VIBRATIONS AS TREATED BY THE GF-MATRIX METHOD. , 1961 .