The Petty projection inequality for sets of finite perimeter

Within the Brunn-Minkowski theory, the two classical inequalities which connect the volume of a convex body with that of its polar projection body are the Petty and Zhang projection inequalities. Unlike the classical isoperimetric inequality (see, e.g., [19–21, 52]), the Petty and Zhang projection inequalities are affine isoperimetric inequalities in that they are inequalities between a pair of geometric functionals whose product is invariant under affine transformations. Many important results about affine isoperimetric inequalities and their functional forms have been found (see, e.g., [3, 7, 10, 17, 28–31, 43]). The Petty projection inequality strengthens and directly implies the classical isoperimetric inequality, but it can be viewed as an optimal isoperimetric inequality. It is the geometric core of the affine Sobolev-Zhang inequality [61] which strengthens the classical sharp Euclidean Sobolev inequality. The Lp version of Petty’s inequality by Lutwak et al. [43] and its Orlicz extension by the same authors [48] both represent landmark results in the evolution of the Brunn-Minkowski theory first towards an Lp theory and, more recently, towards an Orlicz theory of convex bodies. The Lp and Orlicz theories of convex bodies have expanded rapidly (see, e.g., [7, 12, 22, 23, 26, 27, 32, 34–42, 44–47, 60, 62]). Affine isoperimetric inequalities referring to convex bodies have been extended to certain classes of non-convex domains such as star bodies and sets of finite perimeter. The Petty projection inequality has

[1]  G. Burton Sobolev Spaces , 2013 .

[2]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[3]  P. Gruber The Space of Convex Bodies , 1993 .

[4]  Gaoyong Zhang,et al.  Sharp convex Lorentz–Sobolev inequalities , 2011 .

[5]  G. Polya,et al.  Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .

[6]  Franz E Schuster,et al.  General $L_p$ affine isoperimetric inequalities , 2008, 0809.1983.

[7]  A. Volčič Random Steiner symmetrizations of sets and functions , 2013 .

[8]  E. Lutwak,et al.  The even Orlicz-Minkowski problem , 2010 .

[9]  Youjiang Lin Affine Orlicz Pólya–Szegö principle for log-concave functions , 2017 .

[10]  R. Gardner Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .

[11]  N. Fusco,et al.  Functions of Bounded Variation¶and Rearrangements , 2002 .

[12]  G. Leng,et al.  Dar’s conjecture and the log–Brunn–Minkowski inequality , 2016 .

[13]  N. Fusco The Stability of the Isoperimetric Inequality , 2017 .

[14]  E. Lutwak,et al.  Affine Moser–Trudinger and Morrey–Sobolev inequalities , 2009 .

[15]  M. Reitzner,et al.  A classification of $\operatorname{SL}(n)$ invariant valuations , 2010 .

[16]  Monika Ludwig,et al.  Projection bodies and valuations , 2002 .

[17]  Neil S. Trudinger,et al.  On new isoperimetric inequalities and symmetrization. , 1997 .

[18]  N. Fusco,et al.  Stability of the Steiner symmetrization of convex sets , 2013 .

[19]  W. Ziemer Weakly differentiable functions , 1989 .

[20]  A. Cianchi On Some Aspects of the Theory of Orlicz–Sobolev Spaces , 2010 .

[21]  K. Böröczky,et al.  Stronger versions of the Orlicz-Petty projection inequality , 2011, 1105.3251.

[22]  A. Figalli,et al.  A mass transportation approach to quantitative isoperimetric inequalities , 2010 .

[23]  Deane Yang ON THE Lp-MINKOWSKI PROBLEM , 2003 .

[24]  Guangxian Zhu,et al.  The Orlicz centroid inequality for star bodies , 2012, Adv. Appl. Math..

[25]  Erwin Lutwak,et al.  Orlicz centroid bodies , 2010 .

[26]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[27]  J. Alonso,et al.  Convex and Discrete Geometry , 2009 .

[28]  M. Reitzner,et al.  A Characterization of Affine Surface Area , 1999 .

[29]  On the extremals of the Polya-Szego inequality , 2014, 1407.6567.

[30]  Erwin Lutwak,et al.  The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , 1993 .

[31]  Yan Guo,et al.  Compactness via symmetrization , 2004 .

[32]  E. Lutwak,et al.  Sharp Affine LP Sobolev Inequalities , 2002 .

[33]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[34]  F. Maggi Some methods for studying stability in isoperimetric type problems , 2008 .

[35]  Erwin Lutwak,et al.  The Brunn–Minkowski–Firey Theory II: Affine and Geominimal Surface Areas , 1996 .

[36]  E. Lutwak,et al.  On the _{}-Minkowski problem , 2003 .

[37]  G. Leng,et al.  On the Lp affine isoperimetric inequalities , 2011 .

[38]  Almut Burchard,et al.  Cases of equality in the riesz rearrangement inequality , 1996 .

[39]  Gerald Beer The Hausdorff metric and convergence in measure. , 1974 .

[40]  Erwin Lutwak,et al.  L p Affine Isoperimetric Inequalities , 2000 .

[41]  P. Gronchi,et al.  Symmetrization in geometry , 2016, 1603.00643.

[42]  Franz E Schuster,et al.  An asymmetric affine Pólya–Szegö principle , 2012 .

[43]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[44]  G. Talenti The Standard Isoperimetric Theorem , 1993 .

[45]  Franz E Schuster,et al.  Asymmetric affine Lp Sobolev inequalities , 2009 .

[46]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[47]  Lukas Parapatits,et al.  The Centro-Affine Hadwiger Theorem , 2013, 1307.0797.

[48]  G. Bianchi,et al.  CONVERGENCE IN SHAPE OF STEINER SYMMETRIZATIONS , 2012, 1206.2041.

[49]  N. Fusco,et al.  The sharp quantitative isoperimetric inequality , 2008 .

[50]  Smoothness of the Steiner symmetrization , 2017 .

[51]  M. Reitzner A classification of SL.n/ invariant valuations , 2007 .

[52]  A. Volčič On iterations of Steiner symmetrizations , 2016 .

[53]  N. Fusco,et al.  Steiner symmetric extremals in Pólya–Szegö-type inequalities , 2006 .

[54]  Minkowski Valuations,et al.  Minkowski Valuations , 2004 .

[55]  G. Talenti Inequalities in rearrangement invariant function spaces , 1994 .

[56]  Ronald F. Gariepy,et al.  Measure Theory and Fine Properties of Functions, Revised Edition , 1865 .

[57]  V. G. Mazʹi︠a︡,et al.  Sobolev spaces : with applications to elliptic partial differential equations , 2011 .

[58]  Erwin Lutwak,et al.  Orlicz projection bodies , 2010 .

[59]  Paolo Gronchi,et al.  The Lp-Busemann–Petty Centroid Inequality , 2002 .

[60]  L. Evans Measure theory and fine properties of functions , 1992 .

[61]  Franz E Schuster,et al.  Affine vs. Euclidean isoperimetric inequalities , 2018, Advances in Mathematics.

[62]  Stability of Pólya–Szegő inequality for log-concave functions , 2014 .

[63]  Tuo Wang The affine Sobolev–Zhang inequality on BV(Rn) , 2012 .

[64]  M. Ludwig General affine surface areas , 2009, 0908.2191.

[65]  E. Lutwak,et al.  Optimal Sobolev norms and the Lp Minkowski problem , 2006 .

[66]  The perimeter inequality under Steiner symmetrization: Cases of equality , 2005 .

[67]  Youjiang Lin The affine Orlicz Pólya–Szegö principle on $$BV(\Omega )$$ , 2019, Calculus of Variations and Partial Differential Equations.

[68]  Gaoyong Zhang The affine Sobolev inequality , 1999 .