The Petty projection inequality for sets of finite perimeter
暂无分享,去创建一个
[1] G. Burton. Sobolev Spaces , 2013 .
[2] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[3] P. Gruber. The Space of Convex Bodies , 1993 .
[4] Gaoyong Zhang,et al. Sharp convex Lorentz–Sobolev inequalities , 2011 .
[5] G. Polya,et al. Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .
[6] Franz E Schuster,et al. General $L_p$ affine isoperimetric inequalities , 2008, 0809.1983.
[7] A. Volčič. Random Steiner symmetrizations of sets and functions , 2013 .
[8] E. Lutwak,et al. The even Orlicz-Minkowski problem , 2010 .
[9] Youjiang Lin. Affine Orlicz Pólya–Szegö principle for log-concave functions , 2017 .
[10] R. Gardner. Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .
[11] N. Fusco,et al. Functions of Bounded Variation¶and Rearrangements , 2002 .
[12] G. Leng,et al. Dar’s conjecture and the log–Brunn–Minkowski inequality , 2016 .
[13] N. Fusco. The Stability of the Isoperimetric Inequality , 2017 .
[14] E. Lutwak,et al. Affine Moser–Trudinger and Morrey–Sobolev inequalities , 2009 .
[15] M. Reitzner,et al. A classification of $\operatorname{SL}(n)$ invariant valuations , 2010 .
[16] Monika Ludwig,et al. Projection bodies and valuations , 2002 .
[17] Neil S. Trudinger,et al. On new isoperimetric inequalities and symmetrization. , 1997 .
[18] N. Fusco,et al. Stability of the Steiner symmetrization of convex sets , 2013 .
[19] W. Ziemer. Weakly differentiable functions , 1989 .
[20] A. Cianchi. On Some Aspects of the Theory of Orlicz–Sobolev Spaces , 2010 .
[21] K. Böröczky,et al. Stronger versions of the Orlicz-Petty projection inequality , 2011, 1105.3251.
[22] A. Figalli,et al. A mass transportation approach to quantitative isoperimetric inequalities , 2010 .
[23] Deane Yang. ON THE Lp-MINKOWSKI PROBLEM , 2003 .
[24] Guangxian Zhu,et al. The Orlicz centroid inequality for star bodies , 2012, Adv. Appl. Math..
[25] Erwin Lutwak,et al. Orlicz centroid bodies , 2010 .
[26] G. Pólya,et al. Isoperimetric inequalities in mathematical physics , 1951 .
[27] J. Alonso,et al. Convex and Discrete Geometry , 2009 .
[28] M. Reitzner,et al. A Characterization of Affine Surface Area , 1999 .
[29] On the extremals of the Polya-Szego inequality , 2014, 1407.6567.
[30] Erwin Lutwak,et al. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , 1993 .
[31] Yan Guo,et al. Compactness via symmetrization , 2004 .
[32] E. Lutwak,et al. Sharp Affine LP Sobolev Inequalities , 2002 .
[33] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[34] F. Maggi. Some methods for studying stability in isoperimetric type problems , 2008 .
[35] Erwin Lutwak,et al. The Brunn–Minkowski–Firey Theory II: Affine and Geominimal Surface Areas , 1996 .
[36] E. Lutwak,et al. On the _{}-Minkowski problem , 2003 .
[37] G. Leng,et al. On the Lp affine isoperimetric inequalities , 2011 .
[38] Almut Burchard,et al. Cases of equality in the riesz rearrangement inequality , 1996 .
[39] Gerald Beer. The Hausdorff metric and convergence in measure. , 1974 .
[40] Erwin Lutwak,et al. L p Affine Isoperimetric Inequalities , 2000 .
[41] P. Gronchi,et al. Symmetrization in geometry , 2016, 1603.00643.
[42] Franz E Schuster,et al. An asymmetric affine Pólya–Szegö principle , 2012 .
[43] V. V. Buldygin,et al. Brunn-Minkowski inequality , 2000 .
[44] G. Talenti. The Standard Isoperimetric Theorem , 1993 .
[45] Franz E Schuster,et al. Asymmetric affine Lp Sobolev inequalities , 2009 .
[46] Philip D. Plowright,et al. Convexity , 2019, Optimization for Chemical and Biochemical Engineering.
[47] Lukas Parapatits,et al. The Centro-Affine Hadwiger Theorem , 2013, 1307.0797.
[48] G. Bianchi,et al. CONVERGENCE IN SHAPE OF STEINER SYMMETRIZATIONS , 2012, 1206.2041.
[49] N. Fusco,et al. The sharp quantitative isoperimetric inequality , 2008 .
[50] Smoothness of the Steiner symmetrization , 2017 .
[51] M. Reitzner. A classification of SL.n/ invariant valuations , 2007 .
[52] A. Volčič. On iterations of Steiner symmetrizations , 2016 .
[53] N. Fusco,et al. Steiner symmetric extremals in Pólya–Szegö-type inequalities , 2006 .
[54] Minkowski Valuations,et al. Minkowski Valuations , 2004 .
[55] G. Talenti. Inequalities in rearrangement invariant function spaces , 1994 .
[56] Ronald F. Gariepy,et al. Measure Theory and Fine Properties of Functions, Revised Edition , 1865 .
[57] V. G. Mazʹi︠a︡,et al. Sobolev spaces : with applications to elliptic partial differential equations , 2011 .
[58] Erwin Lutwak,et al. Orlicz projection bodies , 2010 .
[59] Paolo Gronchi,et al. The Lp-Busemann–Petty Centroid Inequality , 2002 .
[60] L. Evans. Measure theory and fine properties of functions , 1992 .
[61] Franz E Schuster,et al. Affine vs. Euclidean isoperimetric inequalities , 2018, Advances in Mathematics.
[62] Stability of Pólya–Szegő inequality for log-concave functions , 2014 .
[63] Tuo Wang. The affine Sobolev–Zhang inequality on BV(Rn) , 2012 .
[64] M. Ludwig. General affine surface areas , 2009, 0908.2191.
[65] E. Lutwak,et al. Optimal Sobolev norms and the Lp Minkowski problem , 2006 .
[66] The perimeter inequality under Steiner symmetrization: Cases of equality , 2005 .
[67] Youjiang Lin. The affine Orlicz Pólya–Szegö principle on $$BV(\Omega )$$ , 2019, Calculus of Variations and Partial Differential Equations.
[68] Gaoyong Zhang. The affine Sobolev inequality , 1999 .