Block-codes with a very small number of codewords are Investigated for the two special binary memoryless channels, the binary symmetric channel (BSC) and the Z-channel (ZC). The optimal (In the sense of minimum average error probability, using maximum likelihood decoding) code structure Is derived for the cases of two, three, and four codewords and an arbitrary blocklength. It Is shown that for two possible messages, on a BSC, the so-called flip codes of type t are optimal for any t, while on a ZC, the flip code of type 0 Is optimal. For codes with three or four messages It Is shown that the so-called weak flip codes of some given type are optimal where the type depends on the blocklength. For all cases an algorithm Is presented that constructs an optimal code for blocklength n recursively from an optimal code of length n — 1. For the ZC a recursive optimal code design Is conjectured In the case of live possible messages. The derivation of these optimal codes relies heavily on a new approach of constructing and analyzing the code-matrix not row-wise (codewords), but column-wise. Moreover, these results also prove that the minimum Hamming distance might be the wrong design criterion for optimal codes even for very symmetric channels like the BSC.
[1]
L. Litwin,et al.
Error control coding
,
2001
.
[2]
D. A. Bell,et al.
Information Theory and Reliable Communication
,
1969
.
[3]
H. Vincent Poor,et al.
Channel Coding Rate in the Finite Blocklength Regime
,
2010,
IEEE Transactions on Information Theory.
[4]
Sang Joon Kim,et al.
A Mathematical Theory of Communication
,
2006
.
[5]
Yunghsiang Sam Han,et al.
On the coding scheme for joint channel estimation and error correction over block fading channels
,
2009,
2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.