Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend

We investigate the mixed fractional Brownian motion with trend of the form $$X_t = \theta t + \sigma W_t + \kappa B^H_t$$ , driven by a standard Brownian motion W and a fractional Brownian motion $$B^H$$ with Hurst parameter H. We develop and compare two approaches to estimation of four unknown parameters $$\theta $$ , $$\sigma $$ , $$\kappa $$ and H by discrete observations. The first algorithm is more traditional: we estimate $$\sigma $$ , $$\kappa $$ and H using the quadratic variations, while the estimator of $$\theta $$ is obtained as a discretization of a continuous-time estimator of maximum likelihood type. This approach has several limitations, in particular, it assumes that $$H<\frac{3}{4}$$ , moreover, some estimators have too low rate of convergence. Therefore, we propose a new method for simultaneous estimation of all four parameters, which is based on the ergodic theorem. Finally, we compare two approaches by Monte Carlo simulations.

[1]  Weilin Xiao,et al.  Parameter identification in mixed Brownian–fractional Brownian motions using Powell's optimization algorithm , 2014 .

[2]  Alain Le Breton,et al.  Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion , 1998 .

[3]  P. Silvapulle,et al.  LONG-TERM MEMORY IN STOCK MARKET RETURNS: INTERNATIONAL EVIDENCE , 2001 .

[4]  Alexander Melnikov,et al.  On drift parameter estimation in models with fractional Brownian motion , 2011, 1112.2330.

[5]  D. Filatova,et al.  Mixed fractional Brownian motion: some related questions for computer network traffic modeling , 2008, 2008 International Conference on Signals and Electronic Systems.

[6]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[7]  Y. Mishura,et al.  Asymptotic behavior of mixed power variations and statistical estimation in mixed models , 2013, 1301.0993.

[8]  Wei-Guo Zhang,et al.  Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm , 2012 .

[9]  I. Norros,et al.  An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions , 1999 .

[10]  Rainer Schöbel,et al.  A note on the use of fractional Brownian motion for financial modeling , 2013 .

[11]  T. Sottinen,et al.  Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets , 2020, Commun. Stat. Simul. Comput..

[12]  I︠U︡lii︠a︡ S. Mishura Stochastic Calculus for Fractional Brownian Motion and Related Processes , 2008 .

[13]  Y. Mishura,et al.  Parameter Estimation in Fractional Diffusion Models , 2018 .

[14]  Lin Sun Pricing currency options in the mixed fractional Brownian motion , 2013 .

[15]  P. Chigansky,et al.  The maximum likelihood drift estimator for mixed fractional Brownian motion , 2012 .

[16]  Patrick Cheridito,et al.  Arbitrage in fractional Brownian motion models , 2003, Finance Stochastics.

[17]  On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations , 2014 .

[18]  Wei-guo Zhang,et al.  Maximum-likelihood estimators in the mixed fractional Brownian motion , 2011 .

[19]  Oâ Lan T. Henry Long memory in stock returns: some international evidence , 2002 .

[20]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[21]  Patrick Cheridito Mixed fractional Brownian motion , 2001 .

[22]  M. Zili On the mixed fractional Brownian motion , 2006 .

[23]  K. Singleton,et al.  Specification Analysis of Affine Term Structure Models , 1997 .

[24]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[25]  Y. Mishura,et al.  Drift Parameter Estimation in Diffusion and Fractional Diffusion Models , 2017 .

[26]  Wei-Guo Zhang,et al.  Equity warrants pricing model under Fractional Brownian motion and an empirical study , 2009, Expert Syst. Appl..