Suboptimal nonlinear predictive control based on multivariable neural Hammerstein models

This paper describes a computationally efficient nonlinear Model Predictive Control (MPC) algorithm in which the neural Hammerstein model is used. The Multiple-Input Multiple-Output (MIMO) dynamic model contains a neural steady-state nonlinear part in series with a linear dynamic part. The model is linearized on-line, as a result the MPC algorithm requires solving a quadratic programming problem, the necessity of nonlinear optimization is avoided. A neutralization process is considered to discuss properties of neural Hammerstein models and to show advantages of the described MPC algorithm. In practice, the algorithm gives control performance similar to that obtained in nonlinear MPC, which hinges on non-convex optimization.

[1]  Sirish L. Shah,et al.  Constrained nonlinear MPC using hammerstein and wiener models: PLS framework , 1998 .

[2]  Shivaram Kamat,et al.  Modeling of pH process using wavenet based Hammerstein model , 2007 .

[3]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[4]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[5]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[6]  T. Gustafsson,et al.  Nonlinear and adaptive control of pH , 1992 .

[7]  V. Chandrasekar,et al.  Hammerstein model identification by multilayer feedforward neural networks , 1997, Int. J. Syst. Sci..

[8]  Maciej Ławryńczuk,et al.  Suboptimal Nonlinear Predictive Control with MIMO Neural Hammerstein Models , 2008 .

[9]  Daniel E. Rivera,et al.  Nonlinear black-box identification of distillation column models - design variable selection for model performance enhancement , 1998 .

[10]  Ngoc Thanh Nguyen,et al.  New Frontiers in Applied Artificial Intelligence, 21st International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2008, Wroclaw, Poland, June 18-20, 2008, Proceedings , 2008, International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems.

[11]  Jozef Vörös,et al.  Parameter identification of discontinuous hammerstein systems , 1997, Autom..

[12]  Heinz Unbehauen,et al.  Indirect adaptive dual control for Hammerstein systems using ANN , 2003 .

[13]  John Anthony Rossiter Model-Based Predictive Control , 2003 .

[14]  W. Greblicki Non-parametric orthogonal series identification of Hammerstein systems , 1989 .

[15]  Hannu T. Toivonen,et al.  A neural network model predictive controller , 2006 .

[16]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[17]  Stephen Piche,et al.  Nonlinear model predictive control using neural networks , 2000 .

[18]  A. Janczak,et al.  Identification of Nonlinear Systems Using Neural Networks and Polynomial Models: A Block-Oriented Approach , 2004 .

[19]  David T. Westwick,et al.  Identification of Hammerstein models with cubic spline nonlinearities , 2004, IEEE Transactions on Biomedical Engineering.

[20]  Maciej Lawrynczuk,et al.  ECONOMIC EFFICACY OF MULTILAYER CONSTRAINED PREDICTIVE CONTROL STRUCTURES: AN APPLICATION TO A MIMO NEUTRALISATION REACTOR , 2007 .

[21]  Y. Arkun,et al.  Real-time application of scheduling quasi-min-max model predictive control to a bench-scale neutralization reactor , 2004 .

[22]  Niels Kjølstad Poulsen,et al.  Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook , 2000 .

[23]  P. R. Krishnaswamy,et al.  pH and level controller for a pH neutralization process , 2001 .

[24]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[25]  Sirish L. Shah,et al.  Identification of Hammerstein models using multivariate statistical tools , 1995 .

[26]  Maciej Ławryńczuk,et al.  A Family of Model Predictive Control Algorithms With Artificial Neural Networks , 2007, Int. J. Appl. Math. Comput. Sci..

[27]  I. Mareels,et al.  Dead-beat control of simple Hammerstein models , 1998, IEEE Trans. Autom. Control..

[28]  Johan A. K. Suykens,et al.  Identification of MIMO Hammerstein models using least squares support vector machines , 2005, Autom..

[29]  Gade Pandu Rangaiah,et al.  Experimental evaluation of an augmented IMC for nonlinear systems , 2000 .

[30]  Dale E. Seborg,et al.  Adaptive nonlinear control of a pH neutralization process , 1994, IEEE Trans. Control. Syst. Technol..

[31]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[32]  Doug Cooper,et al.  A practical multiple model adaptive strategy for single-loop MPC , 2003 .

[33]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[34]  Piotr Tatjewski,et al.  Advanced Control of Industrial Processes: Structures and Algorithms , 2006 .

[35]  Wolfgang Marquardt,et al.  Nonlinear model predictive control of multivariable processes using block-structured models , 2007 .

[36]  Dingli Yu,et al.  Implementation of neural network predictive control to a multivariable chemical reactor , 2003 .

[37]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[38]  Michael A. Henson,et al.  Nonlinear model predictive control: current status and future directions , 1998 .

[39]  Junghui Chen,et al.  Applying neural networks to on-line updated PID controllers for nonlinear process control , 2004 .

[40]  János Abonyi,et al.  Identification and Control of Nonlinear Systems Using Fuzzy Hammerstein Models , 2000 .

[41]  Matthew A. Franchek,et al.  Robust SISO H 8 controller design for nonlinear systems , 2005 .

[42]  Mohamed Azlan Hussain,et al.  Review of the applications of neural networks in chemical process control - simulation and online implementation , 1999, Artif. Intell. Eng..

[43]  A. Janczak Identification of Nonlinear Systems Using Neural Networks and Polynomial Models: A Block-Oriented Approach (Lecture Notes in Control and Information Sciences) , 2004 .

[44]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[45]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[46]  Riccardo Scattolini,et al.  On the choice of the horizon in long-range predictive control - Some simple criteria , 1990, Autom..

[47]  Jie Bao,et al.  Model Predictive Control of Hammerstein Systems with Multivariable Nonlinearities , 2007 .

[48]  Piotr M. Marusak,et al.  Advantages of an easy to design fuzzy predictive algorithm in control systems of nonlinear chemical reactors , 2009, Appl. Soft Comput..

[49]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[50]  M. Ayoubi Comparison between the dynamic multi-layered perceptron and the generalised Hammerstein model for experimental identification of the loading process in diesel engines , 1997 .