Asexual lineages of a cosmopolitan pest aphid are associated with different climatic niches

Asexual lineages often exhibit broader distributions and can thrive in extreme habitats compared to their sexual counterparts. Two hypotheses have been proposed to explain this phenomenon. The general-purpose genotype model posits that selection favours a few versatile asexual genotypes with wide environmental tolerance, enabling their long-term persistence across diverse conditions. Conversely, the frozen niche variation model suggests that selection favours specialised genotypes with minimal niche overlap among them and their sexual relatives, potentially leading to competition-driven exclusion of both sexual and asexual relatives. To investigate these hypotheses, we examined ecological niche differentiation among six globally distributed obligate asexual lineages of the cosmopolitan aphid pest, Brachycaudus helichrysi. We initially investigated the presence of different endosymbionts across clones, as endosymbionts play a major role in aphid niche differentiation. Subsequently, we conducted multivariate analyses to explore climatic niche divergence among clones. We provide evidence for climatic niche specialisation in asexual lineages, which is not related to variations in endosymbiont associations. Therefore, despite their apparent global distribution, B. helichrysi clones exhibit characteristics of specialised genotypes, which aligns with the frozen niche variation hypothesis. This study represents the first comprehensive evidence of climatic adaptation in aphid superclones, providing novel insights into their global distribution.

[1]  T. Hance,et al.  Still standing: The heat protection delivered by a facultative symbiont to its aphid host is resilient to repeated thermal stress , 2023, Current research in insect science.

[2]  S. Scheu,et al.  “Jack‐of‐all‐trades” is parthenogenetic , 2022, Ecology and evolution.

[3]  N. Anderson,et al.  Centennial clonal stability of asexual Daphnia in Greenland lakes despite climate variability , 2020, bioRxiv.

[4]  Melanie R. Smee,et al.  Aphid Facultative Symbionts Aid Recovery of Their Obligate Symbiont and Their Host After Heat Stress , 2020, Frontiers in Ecology and Evolution.

[5]  N. Moran,et al.  Obligate bacterial endosymbionts limit thermal tolerance of insect host species , 2019, Proceedings of the National Academy of Sciences.

[6]  E. Jousselin,et al.  The evolution of climate tolerance in conifer‐feeding aphids in relation to their host's climatic niche , 2019, Ecology and evolution.

[7]  P. Graystock,et al.  The bumble bee microbiome increases survival of bees exposed to selenate toxicity. , 2019, Environmental microbiology.

[8]  D. J. Parker,et al.  Fundamental and realized feeding niche breadths of sexual and asexual stick insects , 2018, bioRxiv.

[9]  C. C. Figueroa,et al.  Biological and genetic features of introduced aphid populations in agroecosystems. , 2018, Current opinion in insect science.

[10]  Cornel Adler,et al.  Ancient symbiosis confers desiccation resistance to stored grain pest beetles , 2017, bioRxiv.

[11]  T. Dickinson,et al.  Widespread generalist clones are associated with range and niche expansion in allopolyploids of Pacific Northwest Hawthorns (Crataegus L.) , 2017, Molecular ecology.

[12]  Antoine Guisan,et al.  ecospat: an R package to support spatial analyses and modeling of species niches and distributions , 2017 .

[13]  E. Jeppesen,et al.  Environment not dispersal limitation drives clonal composition of Arctic Daphnia in a recently deglaciated area , 2016, Molecular ecology.

[14]  R. Denton,et al.  Niche partitioning among sexual and unisexual Ambystoma salamanders , 2016 .

[15]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[16]  T. Fukatsu,et al.  Collapse of Insect Gut Symbiosis under Simulated Climate Change , 2016, mBio.

[17]  O. Langella,et al.  Large-scale phylogeographic study of the cosmopolitan aphid pest Brachycaudus helichrysi reveals host plant associated lineages that evolved in allopatry , 2016 .

[18]  C. C. Figueroa,et al.  Evidence of plastic probing behavior in a ‘superclone’ of the grain aphid Sitobion avenae , 2016, Bulletin of Entomological Research.

[19]  Mahendra Mariadassou,et al.  FROGS: Find, Rapidly, OTUs with Galaxy Solution , 2018, Bioinform..

[20]  Olaf Conrad,et al.  Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.

[21]  M. Galan,et al.  Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont‐rich aphid genus , 2016, Molecular ecology resources.

[22]  O. Edwards,et al.  Host Plant Specialization in the Sugarcane Aphid Melanaphis sacchari , 2015, PloS one.

[23]  J. Ferrari,et al.  A facultative endosymbiont in aphids can provide diverse ecological benefits , 2015, Journal of evolutionary biology.

[24]  A. Gilabert,et al.  Longitudinal clines in the frequency distribution of ‘super-clones’ in an aphid crop pest , 2015, Bulletin of Entomological Research.

[25]  T. Lenormand,et al.  Niche Limits of Symbiotic Gut Microbiota Constrain the Salinity Tolerance of Brine Shrimp , 2015, The American Naturalist.

[26]  Frédéric Mahé,et al.  Swarm: robust and fast clustering method for amplicon-based studies , 2014, PeerJ.

[27]  H. Delatte,et al.  Low Genetic Diversity in Melanaphis sacchari Aphid Populations at the Worldwide Scale , 2014, PloS one.

[28]  A. Cruaud,et al.  DNA Barcoding and the Associated PhylAphidB@se Website for the Identification of European Aphids (Insecta: Hemiptera: Aphididae) , 2014, PloS one.

[29]  C. Vorburger The evolutionary ecology of symbiont‐conferred resistance to parasitoids in aphids , 2014, Insect science.

[30]  Rajesh K. Gupta,et al.  Regular or covert sex defines two lineages and worldwide superclones within the leaf‐curl plum aphid (Brachycaudus helichrysi, Kaltenbach) , 2013, Molecular ecology.

[31]  Yongliang Fan,et al.  Can't Take the Heat: High Temperature Depletes Bacterial Endosymbionts of Ants , 2013, Microbial Ecology.

[32]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[33]  G. Genson,et al.  Molecular identification and ecological characteristics of two cryptic lineages within a cosmopolitan aphid pest, Brachycaudus helichrysi (Hemiptera: Aphididae) , 2013, Applied Entomology and Zoology.

[34]  Emily R. Davenport,et al.  Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs , 2013, PloS one.

[35]  A. Tayeh,et al.  Molecular phylogeny reveals the existence of two sibling species in the aphid pest Brachycaudus helichrysi (Hemiptera: Aphididae) , 2012 .

[36]  M. Fortin,et al.  Measuring ecological niche overlap from occurrence and spatial environmental data , 2012 .

[37]  B. Jordal,et al.  Improbable but true: the invasive inbreeding ambrosia beetle Xylosandrus morigerus has generalist genotypes , 2012, Ecology and evolution.

[38]  Robert P. Anderson,et al.  Ecological Niches and Geographic Distributions (MPB-49) , 2011 .

[39]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[40]  T. Juenger,et al.  Environmental gradients structure Daphnia pulex × pulicaria clonal distribution , 2011, Journal of evolutionary biology.

[41]  M. Ghanim,et al.  Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype , 2011 .

[42]  R. Nespolo,et al.  Physiological approach to explain the ecological success of 'superclones' in aphids: interplay between detoxification enzymes, metabolism and fitness. , 2010, Journal of insect physiology.

[43]  B. Fenton,et al.  Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid , 2009, BMC Ecology.

[44]  T. Brévault,et al.  Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants , 2009, Molecular ecology.

[45]  J. Peccoud,et al.  Host range expansion of an introduced insect pest through multiple colonizations of specialized clones , 2008, Molecular ecology.

[46]  R. O’Hara,et al.  Geographical and ecological distributions of frog hemiclones suggest occurrence of both General-Purpose Genotype and Frozen Niche Variation clones , 2008 .

[47]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[48]  N. Moran,et al.  Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures , 2006, Proceedings of the Royal Society B: Biological Sciences.

[49]  H. Niemeyer,et al.  Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae , 2005, Heredity.

[50]  H. Niemeyer,et al.  EFFECT OF HOST DEFENSE CHEMICALS ON CLONAL DISTRIBUTION AND PERFORMANCE OF DIFFERENT GENOTYPES OF THE CEREAL APHID Sitobion avenae , 2004, Journal of Chemical Ecology.

[51]  P. Sunnucks,et al.  Explaining the coexistence of asexuals with their sexual progenitors: no evidence for general‐purpose genotypes in obligate parthenogens of the peach‐potato aphid, Myzus persicae , 2003 .

[52]  P. Sunnucks,et al.  Environmentally related patterns of reproductive modes in the aphid Myzus persicae and the predominance of two ‘superclones’ in Victoria, Australia , 2003, Molecular ecology.

[53]  K. Martens,et al.  Ecological strategies in the ancient asexual animal group Darwinulidae (Crustacea, Ostracoda) , 2003 .

[54]  J. Tsitsipis,et al.  Performance of Myzus persicae (Hemiptera: Aphididae) clones on different host-plants and their host preference. , 2003, Bulletin of entomological research.

[55]  K. Martens,et al.  A general purpose genotype in an ancient asexual , 2002, Oecologia.

[56]  A. Maxmen,et al.  Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress , 2002 .

[57]  E. Morris,et al.  Remarks , 2001 .

[58]  R. Butlin,et al.  Slow molecular evolution in an ancient asexual ostracod , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  藤木 幸夫,et al.  THE COLD SPRING HARBOR SYMPOSIUM ON QUANTITATIVE BIOLOGY. , 1996, Science.

[60]  S. Leather Aspects of Aphid Overwintering (Homoptera:Aphidinea: Aphididae) , 1992 .

[61]  M. Lynch Destabilizing Hybridization, General-Purpose Genotypes and Geographic Parthenogenesis , 1984, The Quarterly Review of Biology.

[62]  S. Papson,et al.  “Model” , 1981 .

[63]  R. Vrijenhoek Factors Affecting Clonal Diversity and Coexistence , 1979 .

[64]  R. Selander,et al.  GENETIC DIVERSITY IN COLONIZING PARTHENOGENETIC COCKROACHES , 1977, Evolution; international journal of organic evolution.

[65]  W. Westman Ecologists , 1972, Science.

[66]  R. Firth Parthenogenesis , 1912 .

[67]  C. Godfray,et al.  The facultative endosymbionts of grain aphids and the horizontal transfer of ecologically important traits , 2011 .

[68]  S. Salzberg,et al.  FLASH: fast length adjustment of short reads to improve genome assemblies , 2011, Bioinform..

[69]  N. Moran,et al.  Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. , 2010, Annual review of entomology.

[70]  R. Vrijenhoek,et al.  Geographical Parthenogenesis: General Purpose Genotypes and Frozen Niche Variation , 2009 .

[71]  J. Holman Host Plant Catalog of Aphids , 2009 .

[72]  A. Janssen,et al.  Adaptation in the Asexual False Spider Mite Brevipalpus phoenicis: Evidence for Frozen Niche Variation , 2005, Experimental & Applied Acarology.

[73]  I. Herlin Spatial Environmental Data , 2002 .

[74]  N. Ellstrand,et al.  Patterns of Genotypic Diversity in Clonal Plant Species , 1987 .

[75]  Daniel Chessel,et al.  Rythmes saisonniers et composantes stationnelles en milieu aquatique. I: Description d'un plan d'observation complet par projection de variables , 1987 .

[76]  R. Vrijenhoek Ecological Differentiation Among Clones: The Frozen Niche Variation Model , 1984 .

[77]  R. L. Blackman,et al.  Aphids on the World's Crops: An Identification and Information Guide , 1984 .

[78]  T. Schoener Sizes of Feeding Territories among Birds , 1968 .

[79]  H. G. Baker,et al.  Characteristics and modes of origin of weeds. , 1965 .

[80]  S. H. Bennett The Biology, Life History and Methods of Control of the Leaf Curling Plum Aphid Brachycaudus Helichrysi (KLTB.) , 1955 .